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PREFACE TO EIGHTH EDITION

Since the publication of the first edition of this treatise, in

1889, many advances have been made in Hydraulics. Some of

these have been briefly noted in later editions, but to properly

record and correlate them it has now become necessary to

rewrite and reset the book. In so doing the author has en-

deavored to incorporate other features that have been suggested
to him by teachers and engineers, to whom he here expresses

his thanks. All of these suggestions could not be followed, for

thereby the work would have been expanded to two volumes.

Indeed the question as to what should be left out has often been

a more difficult one than that as to what should be inserted, and

the author has made the decision from the point of view of the

probable benefit that may accrue to students in engineering

colleges and to engineers in ordinary conditions of practise.

The same plan of arrangement as in former editions has

been followed, but two new chapters have been added, one on

Hydraulic Instruments and Observations, which treats of the

methods of measuring pressures and velocities, and another on

Pumps and Pumping, in which the various machines for raising

water are discussed from a hydraulic point of view. Among
the new topics introduced in the other chapters may be noted

the vortex whirl that occurs in emptying a vessel, new coeffi-

cients for dams and for steel and wood pipes, the loss of head in

pipes due to curvature, branched circuits or diversions in pipe

systems, the influence of piers in producing backwater, canals

for water-power plants, discharge curves for rivers, the tidal

and the land bore, water-supply estimates, water hammer in

pipes, the stability of a ship, and hydraulic-electric analogies.

Many new examples and problems are given and in these the

author has endeavored not only to exemplify the theory of the

subject, but also to illustrate the conditions of actual practise.
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Historical notes and references to hydraulic literature are

presented with greater fullness than before. . . . Many let-

ters from foreign countries have urged the author to introduce

the metric system of measures into the book. To meet this

demand the most important data, coefficients, and formulas are

given in both English and metric measures, the latter being

placed at the end of each chapter; the student who follows

these will have no occasion to transform English units, but

may learn to think in metric units and to use them without

hesitation. . . . The most important tables are presented both

in the English and in the metric system, the latter not being a

mere transformation of the former but being arranged to be

used with metric arguments.

In former editions of this work, as in most other books, the

numbers of the articles, formulas, cuts, and problems were con-

secutive and independent. In this edition, however, only the

articles are numbered consecutively, while the number of any
formula, cut, or problem agrees with that of the article, and this

is placed at the top of the right-hand page. While the main

purpose in rewriting the book has been to keep it abreast

with modern progress, the attempt has also been made to pre-

sent the subject more concisely and clearly than before in order

to advance the interests of thorough education and to promote
sound engineering practise.



NOTE TO NINTH EDITION

During 1903-1910 the eighth edition of this book was re-

printed eight times, each impression containing some changes
and corrections. It has now become necessary to revise and

reset the entire book in order to more fully include the advances

of the last decade. New matter will be found on hydraulic instru-

ments, methods of measuring water, oblique weirs, submerged

tubes, regulating devices for pipes, conduits, dams, backwater,

rainfall, evaporation, and runoff. The tables of coefficients for

orifices, weirs, pipes, conduits, and channels have been revised

and extended so as to include the results of recent experi-

ments. Some old matter has been omitted or condensed, and

a few changes in arrangement have been made. About one-

fifth of the text is put in smaller type, so as to aid teachers

in selecting shorter courses for their classes. The hydraulic
tables are placed in the text in connection with the matter

explaining them instead of being collected at the end of the

book as before.

In this edition all tables, figures, formulas, and problems bear

the number of the article in which they are located, this num-

ber being given in heavy type on the headline of each right-

hand page. While the amount of matter is about six percent

greater than that in the eighth edition, it occupies twenty pages

less, owing to the smaller type and longer page. A subject
index will be found at the end of the volume. The authors

have everywhere endeavored to unify the presentation of the

subject in a manner advantageous alike to the technical student

and the practising engineer.

NEW YORK, November, 1911.
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TREATISE ON HYDRAULICS

CHAPTER 1

FUNDAMENTAL DATA

ARTICLE 1. UNITS OF MEASURE

The unit of linear measure universally used in English and

American hydraulic literature is the foot, which is denned as

one-third of the standard yard. For some minor purposes, such

as the designation of the diameters of orifices and pipes, the inch

is employed, but inches should always be reduced to feet for use

in hydraulic formulas. The unit of superficial measure is usually

the square foot, except for the expression of the intensity of pres-

sures, when the square inch is more commonly employed.

TABLE la. INCHES REDUCED TO FEET

Inches
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the old English gallon has continued to be employed, and the

former is 20 percent larger than the latter. The following are

the relations between the cubic foot and the two gallons :

i cubic foot =
6.2321 Imp. gallons

=
7.481 U. S. gallons

i Imp. gallon
=

0.1605 cubic feet = 1.200 U. S. gallons

i U. S. gallon
=

0.1337 cubic feet =
0.833 IP- gallons

In this book the word "gallon" will always mean the United

States gallon of 231 cubic inches, unless otherwise stated.

TABLE Ib. GALLONS AND CUBIC FEET

Cubic
Feet
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miles per hour or otherwise. Acceleration is the velocity gainnl

in one second, and it is measured in feet per second per second.

The unit of work is the foot-pound ;
that is, one pound 1 i

through a vertical distance of one foot. Energy is work which

can be done
;

for example, a moving body has the ability to do

a certain amount of work by virtue of its quantity of matter and

its velocity, and this is called kinetic energy. Again, water

at the top of a fall has the ability to do a certain amount of work

by virtue of its quantity and its height above the foot of the fall.

and this is called potential energy. Potential energy changes

into kinetic energy as the water drops, and kinetic energy is

either changed into heat or may be transformed, by means of a

water motor, into useful work. Power is work done, or energy

capable of being transformed into work, in a specified time, and

the unit for its measure is the horse-power, which is 550 foot-

pounds per second.

In French and German literature the metric system of measures

is employed, and this is far more convenient than the English one in

hydraulic computations. This system is understood and more or Un-

used in all countries, and its universal adoption will probably occur

during the present century, but the time has not yet come when* an

American engineering book can be prepared wholly in metric measim >.

This treatise will, therefore, mainly use the English units described

above, but at the close of most of the chapters hydraulic data, tables,

and empirical formulas will be given in metric measures. At the end

of the volume will be found tables giving fundamental hydraulic

constants and equivalents in each system of the principal units in

the other system.

Problem 1. When one cubic foot of water, weighing 62$ pounds, falls

each second through a vertical height of n feet, what horse-power can

be developed by a hydraulic motor which utilizes 80 percent of the energy ?

ART. 2. PHYSICAL PROPERTIES OF WATER

At ordinary temperatures pure water is a colorless liquid which

possesses almost perfect fluidity; that is, its particles have the

capacity of moving over each other, so that the slightest dis-

turbance of equilibrium causes a flow. It is a consequence of
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this property that the surface of still water is always level
; also,

'

if several vessels or tubes be connected, as in Fig. 2, and water

be poured into one of them, it rises in the others until, when

equilibrium ensues, the free surfaces are in the same level plane.

The free surface of water is m a different molecular condition

from the other portions, its particles being drawn together by
stronger attractive forces,

so as to form what may
be called the "skin of the

water," upon which insects

may walk or a needle be

caused to float. The skin

is not immediately pierced by a sharp point which moves slowly

upward toward it, but a slight elevation occurs, and this property

enables precise determinations of the level of still water to be

made by the hook gage (Art. 35).

At about 32 Fahrenheit a great alteration in the molecular

constitution of water occurs, and ice is formed. If a quantity

of water be kept in a perfectly quiet condition, it is found that its

temperature can be reduced to 20 or even to 15 Fahrenheit,

before congelation takes place, but at the moment when this

occurs the temperature rises to 32. The freezing-point is hence

not constant, but the melting-point of ice is always at the same

temperature of 32 Fahrenheit or o centigrade.

While water freezes at 32 Fahrenheit, yet its maximum den-

sity is reached at 39-3 Fahrenheit. At this latter temperature
its specific gravity is i.o while at 32 it is 0.99987. As the tem-

perature rises above that of maximum density the specific gravity

of water steadily grows smaller until the boiling-point is reached

at 212 Fahrenheit when its specific gravity is 0.95865. To the

occurrence of the maximum density at a temperature above the

freezing-point is to be attributed the fortunate circumstance

that ponds and streams do not freeze solid from the bottom up.

Ice, as a rule, forms upon the surface of the water in a solid

sheet. The rapidity with which such ice forms is dependent on

the temperature and decreases with the thickness of the ice-sheet..
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The coefficient of linear expansion of ice varies from 0.0000408

to 0.0000197 as the temperature varies from + 30 Fahrenheit

to 30 Fahrenheit.* Under certain conditions a rise in

temperature may cause a considerable expansion, and if the

sheet is a heavy one and expansion is prevented, the pressure

brought to bear on any resisting surface becomes very great.

A second variety of ice called frazil or slush ice is formed in

rapidly flowing water when the temperature of the air is mate-

rially below the freezing-point. This ice is formed in the shape
of small needles which are carried along and deposited in quiet

water below. Accumulations of frazil to a depth of 80 feet have

been known.* A third variety, known as anchor ice, may of

itself be formed directly on the bed and sides of a rapidly flow-

ing stream or be increased in volume by accretions of frazil. In

cold countries the design of hydraulic structures must take into

account all of these three kinds of ice.

Water is a solvent of high efficiency, and is therefore never

found pure in nature. Descending in the form of rain, it absorbs

dust and gaseous impurities from the atmosphere; flowing over the

surface of the earth it absorbs organic and mineral substances. These

affect its weight only slightly as long as it remains fresh, but when it

has reached the sea and becomes salt, its weight is increased more than

2 percent. The flow of water through orifices is only in a very slight

degree affected by the impurities held in solution, but in the flow

through pipes they often cause incrustation or corrosion which in-

creases the roughness of the surface and diminishes the velocity.

The capacity of water for heat, the latent heat evolved when it

freezes, and that absorbed when it is transformed into steam need not

be considered for the purposes of hydraulic investigations. Other

physical properties, such as its variation in volume with the tempera-

ture, its compressibility, and its capacity for transmitting pressures,

are discussed in the following pages. The laws which govern its

pressure, flow, and energy under various circumstances belong to the

science of Hydraulics and form the subject-matter of this volume.

Prob. 2. How many degrees centigrade are equivalent to 40 Fah-

renheit ? How many degrees Fahrenheit are equivalent to 40 centigrade

and how many to + 40 centigrade ?

* Barnes's Ice Formation (New York, 1006), pp. 106, 226.
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ART. 3. THE WEIGHT OF WATER

The weight of water per unit of volume depends upon the

temperature and upon its degree of purity. The following ap-

proximate values are, however, those generally employed except

when great precision is required :

i cubic foot of water weighs 62.5 pounds
i U. S. gallon of water weighs 8.355 pounds

These values will be used in this book, unless otherwise stated,

in the solution of the examples and problems.

The weight per unit of volume of pure distilled water is the

greatest at the temperature of its maximum density, 39.3 Fah-

renheit, and least at the boiling-point. For ordinary computa-
tions the variation in weight due to temperature is not considered,

but in tests of the efficiency of hydraulic motors and of pumps
it should be regarded. The following table contains the weights

of one cubic foot of pure water at different temperatures as de-

duced by Hamilton Smith from the experiments of Rosetti.*

TABLE 3. WEIGHT OF DISTILLED WATER

Temperature
Fahrenheit
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Waters of rivers, springs, and lakes hold in suspension and

solution inorganic matters which cause the weight per unit of

volume to be slightly greater than for pure water* River waters

are usually between 62.3 and 62.6 pounds per cubic foot, de-

pending upon the amount of impurities and on the temperature,

while the water of some mineral springs has been found to be as

high as 62.7. It appears that, in the absence of specific informa-

tion regarding a particular water, the weight 62.5 pounds per

cubic foot is a fair approximate value to use. It also has the ad-

vantage of being a convenient number in computations, for 62.5

pounds is 1000 ounces, or ^{p is the equivalent of 62.5.

Brackish and salt waters are always much heavier than fresh

water. For the Gulf of Mexico the weight per cubic foot is about

63.9, for the oceans about 64.1, while for the Dead Sea there is

stated the value 73 pounds per cubic foot. For Great Salt Lake

the weight of water varies from 69 to 76 pounds per cubic foot.*

The weight of ice per cubic foot varies from 57.2 to 57.5 pounds.

The sewage of American cities is impure water which weighs from

62.4 to 62.7 pounds per cubic foot, but the sewage of European
cities is somewhat heavier on account of the smaller amount of

water that is turned into the sewers.

Prob. 3. How many gallons of water are contained in a pipe 3 inches

in diameter and 12 feet long ? How many pounds of water are contained

in a pipe 6 inches in diameter and 12 feet long ?

ART. 4. ATMOSPHERIC PRESSURE

Torricelli in 1643 discovered that the atmospheric pressure

would cause mercury to rise in a tube from which the air had been

exhausted. This instrument is called the mercury barometer,

and owing to the great density of mercury the height of the column

required to balance the atmospheric pressure is only about 30
inches. When water is used in the vacuum tube, the height of

the column is about 34 feet. In both cases the weight of the

barometric column is equal to the weight of a column of ttir of

the same cross-section as that of the tube, both columns being

measured upward from the common surface of contact.

*
Science, Oct. 21, 1910.
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The atmosphere exerts its pressure with varying intensity

as indicated by the readings of the mercury barometer. At and

near the sea level the average reading is 30 inches, and as mercury

weighs 0.49 pounds per cubic inch at common temperatures, the

average atmospheric pressure is taken to be 30 X 0.49 or 14.7

pounds per square inch. The pressure of one atmosphere is

therefore defined to be a pressure of 14.7 pounds per square inch.

Then a pressure of two atmospheres is 29.4 pounds per square

inch. And conversely, a pressure of 100 pounds per square inch

may be expressed as a pressure of 6.8 atmospheres.

Pascal in 1646 carried a mercury barometer to the top of a

mountain and found that the height of the mercury column de-

creased as he ascended. It was thus definitely proved that the

cause of the ascent of the liquid in the vacuum tube was due to

the pressure of the air. Since mercury is 13.6 times heavier than

water, a column of water should rise to a height of 30 X 13.6
=

408 inches = 34 feet under the pressure of one atmosphere, and

this was also found to be the case. A water barometer is imprac-

ticable for use in measuring atmospheric pressures, but it is con-

venient to know its approximate height corresponding to a given

height of the mercury barometer. Table 4 shows heights of

the mercury and water barometers, with the corresponding pres-

TABLE 4. ATMOSPHERIC PRESSURE

Mercury
Barometer

Inches
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sures in pounds per square inch and in atmospheres. It also

gives, in the fifth column, values from the vertical scale of alti-

tudes used in barometric leveling which show approximate eleva-

tions above sea level corresponding to barometer readings, pro-

vided that the reading at sea level is 30 inches. In the last

column are approximate boiling-points of water corresponding to

the readings of the mercury barometer.

The atmospheric pressure must be taken into account in many

computations on the flow of water in tubes and pipes. It is this

pressure that causes water to flow in syphons and to rise in tubes'

from which the air has been exhausted. By virtue of this pres-

sure the suction pump is rendered possible, and all forms of in-

jector pumps depend upon it to a certain degree. On a planet

without an atmosphere many of the phenomena of hydraulics

would be quite different from those observed on this earth.

Prob. 4. A mercury barometer reads 30.25 inches at the foot of a hill,

and at the same time another barometer reads 28.56 inches at the top of

the hill. What is the difference in height between the two stations ?

ART. 5. COMPRESSIBILITY OF WATER

The popular opinion that water is incompressible is not justi-

fied by experiments, which show in fact that it is more compress-

ible than iron or even timber within the elastic limit. These

experiments indicate that the amount of compression is directly

proportional to the applied pressure, and that water is perfectly

elastic, recovering its original form on the removal of the pressure.

The decrease in the unit of volume caused by a pressure of one

atmosphere varies, according to the experiments of Grassi, from

0.000051 at 35 Fahrenheit to 0.000045 at 8 Fahrenheit.* As

a mean 0.00005 may be taken for this cubical unit-compression.

A vertical column of water accordingly increases in density

from the surface downward. If its weight at the surface be 62.5

pounds per cubic foot, at a depth of 34 feet the weight of a cubic

foot will be
62.5(1 +0.00005)= 62.503 pounds,

*
Grassi, Annales de chemie et physique, 1851, vol. 31, p. 437-
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and at a depth of 340 feet a cubic foot will weigh

62.5(1 +0.0005)= 62.53 pounds.

The variation in weight, due to compressibility, is hence too

small to be regarded in hydrostatic computations.

The modulus of elasticity of volume for water is the ratio of

the unit-stress to the cubical unit-compression, or

E = I4 '' = 294 ooo pounds per square inch.

0.00005

The modulus of elasticity of volume for steel, when subjected to

uniform hydrostatic pressure, is the same as the common modu-

lus due to stress in one direction only, or E = 30 ooo ooo pounds

per square inch. Hence water is about 100 times more com-

pressible than steel.

The velocity of sound or stress in any substance is given by
the formula u = ^Eg/w, where w is the weight of a cubic unit

of the material weighed by a spring balance at the place where

the acceleration of gravity is g (Art. 6). For water having
w = 62.4 pounds per cubic foot at a place where g =

32.2

feet per second per second, and E = 42 300 ooo pounds per

square foot, this formula gives u = 4670 feet per second for

the velocity of sound, which agrees well with the results of ex-

periments.

In order to deduce the above formula for the velocity of stress it

is necessary to use some of the fundamental principles of elementary
mechanics and of the mechanics of elastic bodies. Let a free rigid

body of weight W be acted upon for one second by a constant force F
and let / be the velocity of the body at the end of one second. Let g
be the velocity gained in one second by W when falling under the action

of the constant force of gravity. Then, since forces are proportional
to their accelerations, F=W . f/g, and during the second of time the

body has moved the distance -J-/. Now, consider a long elastic

bar of the length u, so that a force applied at one end will be felt at

the other end in one second, it being propagated by virtue of the

elasticity of the material. Let A be the area of the cross-section

of the bar and E the modulus of elasticity of the material. When a

constant compressive force F is applied to the bar, the shortening ul-
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timutely produced is 2 Fu/AE* but if this be done for one second only
the elongation is only half this amount, since the first increment of

stress is just reaching the other end of the bar at the end of the second.

The center of gravity of the bar has then moved through the distance

! /-"u/AE, and its velocity v is Fu/AE. If w is this weight of a

cubic unit of the material, the weight W is wAu. Inserting these

values of v and W in the above equation, there is found

whence u= (5)wAu AEg \ w

which is the formula for the propagation of sound or stress in

elastic materials first established by Newton.

Prob. 5. Compute the velocity of sound in distilled water at 35 and

also at 80 Fahrenheit.

ART. 6. ACCELERATION DUE TO GRAVITY

The motion of water in river channels, and its flow through
orifices and pipes, is produced by the force of gravity. This force

is proportional to the acceleration of the velocity of a body falling

freely in a vacuum
;
that is, to the increase in velocity in one sec-

ond. Acceleration is measured in feet per second per second, so

that its numerical value represents the number of feet per second

which have been gained in one second. The letter g is used to

denote the acceleration of a falling body near the surface of the

earth. In pure mechanics g is found in all formulas relating to

falling bodies
;

for instance, if a body falls from rest through the

height h, it attains in a vacuum a velocity equal to ^/2gh. In

hydraulics g is found in all formulas which express the laws of

flow of water under the influence of gravity.

The quantity of 32.2 feet per second per second is an approxi-
mate value of g which is often used in hydraulic formulas. It is,

however, well known that the force of gravity is not of constant

intensity over the earth's surface, but is greater at the poles than

at the equator, and also greater at the sea level than on hii:h

mountains. The following formula of Peirce, which is partly

theoretical and partly empirical, gives g in feet per second per

* Merriman's Mechanics of Material (New York, 1911), pp. 25, 325.
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second for any latitude /, and any elevation e above the sea level,

being in feet :

g
=

32.0894 (i + 0.0052375 sin2 /) (i 0.000000095 70) (6)1

and from this its value may be computed for any locality.

The greatest value of g is at the sea level at the pole, and

for this locality / = 90, e = o, whence g
=

32.258. The least

value of g is on high mountains at the equator ;
for this there

may be taken / = o, e = 10 ooo feet, whence g = 32.059. The

mean of these is the value of the acceleration used in this book,

unless otherwise stated, namely,

g = 32.16 feet per second per second,

and from this the mean values of the frequently occurring

-quantities A/2g and i/2g are found to be

V2g= 8.020, I/2g = 0.01555. (6)2

If greater precision be required, which will sometimes be the case,

g can be computed from the above formula for the particular

latitude and elevation. Table 6 gives multiples of the quantities

g, 2g, i/2g, and Vsg which will often be useful in numerical

computations.

TABLE 6. ACCELERATION OF GRAVITY

No.
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ART. 7. HISTORICAL NOTES

Hydraulics is that branch of the mechanics of fluids which

treats of water in motion, while Hydrostatics treats of water at

rest. These two branches are sometimes regarded as a part of

Hydromechanics, the name of the mechanics of fluids and gases.

While the main purpose of this book is to treat of water in motion,

the most important principles of hydrostatics will also be discussed,

since these are necessary for a complete development of the laws

of flow. The word "Hydraulics" is hence here used as closely

synonymous with the hydromechanics of water.

Hydraulics is a modern science which is still far from perfect.

Archimedes, about 250 B.C., established a few of the principles

of hydrostatics and showed that the weight of an immersed body
is less than its weight in air by the weight of the water that it

displaces. Chain and bucket pumps were used at this period by
the Egyptians, and the force pump was invented by Ctesibius

about 120 B.C. The Romans built aqueducts as early as 300 B.C.,

and later used earthen and lead pipes to convey water from them

to their houses. They knew that water would rise in a lead pipe

to the same level as in the aqueduct and that a slope was neces-

sary to cause flow in the latter, but had no conception of such a

simple quantity as a cubic foot per minute. Even this slight

knowledge was lost after the destruction of Rome, 475 A.D., and

Europe, for a thousand years sunk in barbarism, made no scien-

tific inquiries until the Renaissance period began.

Galileo, in 1630, studied the subject of the flotation of bodies

in water, and a little later his pupils Castelli and Torricelli made
notable discoveries, the former on the flow of water in rivers

and the latter on the height of a jet issuing from an orifice.

Pascal, about 1650, extended Torricelli's researches on the

influence of atmospheric pressure in causing liquids to rise in

a vacuum. Mariotte, about 1680, considered the influence of

friction in retarding the flow in pipes and channels, and New-

ton, in 1685, observed the contraction of a jet issuing from an

orifice.
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During the eighteenth century notable advances were made.

Daniel and John Bernoulli extended the theory of the equilibrium

and motion of fluids, and this theory was much improved and

generalized by D'Alembert. Bossut and Dubuat made experi-

ments on the flow of water in pipes and deduced practical coeffi-

cients, while Chezy and Prony, near the close of the century,

established general formulas for computing velocity and discharge.

During the nineteenth century progress in every branch of

hydraulics was great and rapid. Eytelwein, Weisbach, and

Hagen stood high among German experimenters ;
Venturi and

Bidone among those of Italy ; Poncelet, Darcy, and Bazin among
those of France

;
while' Kutter in Switzerland, Rankine in Eng-

land, and James B. Francis and Hamilton Smith in America also

took high rank for either practical or theoretical investigations.

By the experiments and discussions of these and many other en-

gineers the necessary coefficients for the discussion of orifices,

weirs, jets, pipes, conduits, and rivers have been determined and

the theory of the flow of water has been much extended and per-

fected. The invention of the turbine by Fourneyron in 1827

exerted much influence upon the development of water power,
while the studies necessary for the construction of canals and for

the improvement of rivers and harbors have greatly promoted

hydraulic science. In this advance the engineers of the United

States did much good work during the latter part of the nineteenth

and are continuing it during the present part of the twentieth

century, as is shown by the numerous valuable papers published
in the Transactions of the American engineering societies and in

the scientific press, many of which will be cited in this book.

Galileo said in 1630 that the laws controlling the motion of

the planets in their celestial orbits were better understood than

those governing the motion of water on the surface of the earth.

This is true today, for the theory of the flow of water in pipes
and channels has not yet been perfected. Experiment is now
in advance of theory, but it is intended to present both in this

volume as far as practicable, for each is necessary to a satisfac-

tory understanding of the other.
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Prob. 7. Who was the author of a book called Lowell Hydraulic Ex-

periments? When and where was it published? What influence has it

exerted upon hydraulic science ?

ART. 8. NUMERICAL COMPUTATIONS

The numerical work of computation should not be carried

to a greater degree of refinement than the data of the problem

warrant. For instance, in questions relating to pressures, the

data are uncertain in the third significant figure, and hence more

figures than three in the final result must be delusive. Thus

let it be required to compute the number of pounds of water in a

box containing 307.37 cubic feet. Taking the mean value 62.5

pounds as the weight of one cubic foot, the multiplication gives

the result 19 210.625 pounds, but evidently the decimals here have

no precision, since the last figure in 62.5 is not accurate, and is

likely to be less than 5, depending upon the impurity of the water

and its temperature. The proper answer to this problem is

19 200 pounds, or perhaps 19 210 pounds, and this is to be re-

garded as a probable average result rather than an exact quantity.

Three significant figures are usually sufficient in the answer

to any hydraulic problem, but in order that the last one may be

correct four significant figures should be used in the computa-

tions. Thus, 307.37 has five significant figures and this should be

written 307.4 before multiplying it by 62.5. The zeros following

a decimal point of a decimal are not counted significant figures ;

thus, 0.0019 has two and 0.0003742 has four significant figures.

* The use of logarithms is to be recommended in hydraulic

computations, as thereby both mental labor and time are saved.

Four-figure tables are sufficient for common problems, and their

use is particularly advantageous in all cases where the data are

not precise, as thus the number of significant figures in final

results is kept at about three, and hence statements implying

great precision, when none really exists, are prevented. The

four-place logarithmic table at the end of this volume will be found

very convenient in solving numerical problems. As an example,

let it be required to find the weight of a column of water 2.66
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inches square and 28.7 feet long. The computation, both by
common arithmetic and by logarithms, is as follows, and it will

be found, by trying similar problems, that in general the use of

By Arithmetic By Logarithms

2.66 0.4249

144

2.66

2.66

5-32

1596

160(144
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These results are more accurate than can be obtained with four-

place logarithmic tables. The logarithmic work for this case

would be the following :

333-4 3*8.7 o .<>

2.5229 2.5034 1.9939

0.8740 0.8740 0.8740

3-3969 3-3774 2.8679

2494 2384 737.7

As this book is mainly intended for the use of students in

technical schools, a word of advice directed especially to them

may not be inappropriate. It will be necessary for students, in

order to gain a clear understanding of hydraulic science, or of

any other engineering subject, to solve many numerical problems,

and in this a neat and systematic method should be cultivated.

The practice of performing computations on any loose scraps of

paper that may happen to be at hand should be at once discon-

tinued by every student who has followed it, and he should here-

after solve his problems in a special book provided for that pur-

pose, and accompany them by such explanatory remarks as may
seem necessary in order to render the solutions clear. Such a

note-book, written in ink, and containing the fully worked out

solutions of the examples and problems given in these pages,

will prove of great value to every student who makes it. Before

beginning the solution of a problem a diagram should be drawn

whenever it is possible, for a diagram helps the student to clearly

understand the problem, and a problem thoroughly understood

is half solved. Before commencing the numerical work, it is also

well to make a mental estimate of the final result.

In this volume Greek letters are used only for signs of operation

and for angles. The letter 8 is employed as the symbol of differenti-

ation and it should be called
"
differential." Following are names

of some Greek letters:

$ Phi

^ Psi

Zeta

<> Omega

a Alpha

ft Beta



18 Chap. 1. Fundamental Data

In every rational algebraic equation it is necessary that all the

terms should be of the same dimension, for it is impossible to add

together quantities of different kinds. This principle will be of great

assistance to the student in checking the correctness of algebraic work.

For example, let a and b represent areas and / a length ;
then such

an equation as al l
2=b is impossible, because al is a volume, while

P and b are areas. Again, let V represent velocity, Q cubic feet per

second, and a area
;
then the equation Q=aV is correct dimensionally,

for the dimension of V is length per second and hence aV is of the

same dimension as Q. The equation Q/a= V- is, however, impossible,

for Q/a is of the same dimension as the first power of V, and this can-

not also be equal to its second power.

Prob. 8. When the height of the water barometer is 33.5 feet, what

is the height of the mercury barometer, and what is the atmospheric

pressure in pounds per square inch?

ART. 9. DATA IN THE METRIC SYSTEM

When the metric system is used for hydraulic computations,
the meter is taken as the unit of length, the cubic meter as the

unit of volume, and the kilogram as the unit of force and weight.

Lengths are sometimes expressed in centimeters and volumes in

liters, but these should be reduced to meters and cubic meters

for use in the formulas. The unit of time is the second, the unit

of velocity is one meter per second, and accelerations are measured

in meters per second per second. Pressures are usually expressed
in kilograms per square centimeter and densities in kilograms per
cubic meter. The metric horse-power is 75 kilogram-meters
of work per second, and this is about ij per cent less than the

English horse-power. Tables at the end of this book give the

equivalents in each system of the units of the other system, but

the student will rarely need to use such tables. He should, on

the other hand, exclusively employ the metric system when using

it, and learn to think readily in it. The following matter is sup-

plementary to the corresponding articles of the preceding pages.

(Art. 2) At about o centigrade ice is generally formed.

When water is kept perfectly quiet, however, it is found that its tem-

perature can be reduced to 7 or 9 before freezing begins, but at

this instant the temperature of the water rises to o centigrade.
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(Art. 3) In the metric system the following approximate values

are used for the weight of water:

i liter of water weighs i kilogram
i cubic meter weighs 1000 kilograms

It may be noted that the constants for the weight of water differ

slightly in the two systems. Thus, the equivalent of 62.5 pounds

l>er cubic foot is about 1001 kilograms per cubic meter. The weight

per unit of volume of pure distilled water is greatest at the temperature
of maximum density, 4.! centigrade, and least at the boiling-point.

Table 9a gives weights of distilled water at different temperatures
in kilograms per cubic meter, as determined by Rossetti.* River

TABLE 9</. WEIGHT OF DISTILLED WATER

Metric Measures

Temperature
Centigrade
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(Art. 4) Near the sea level the average reading of the mer-

cury barometer is 76 centimeters, and since mercury weighs 13.6

grams per cubic centimeter, the average atmospheric pressure is taken

to be 76 -h 0.0136 = 1.0333 kilograms per square centimeter. One

atmosphere of pressure is therefore slightly greater than a pressure

of one kilogram per square centimeter. Conversely, a pressure of

one kilogram per square centimeter may be expressed as a pressure

of 0.968 atmosphere. In a perfect vacuum water will rise to a height

of about ioi meters under a mean pressure of one atmosphere, for the

average specific gravity of mercury is 13.6, and 13.6 X 0.76=10.33

meters. Table 96 shows atmospheric pressures, altitudes, and boil-

ing-points of water corresponding to heights of the mercury and water

barometers.

TABLE 96. ATMOSPHERIC PRESSURE

Metric Measures

Mercury
Barometer
Millimeters
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while that of steel is about 2100000. Using g 9.8 meters per
second per second, the mean velocity of sound in water is

v = \/Eg/w =1420 meters per second.

(Art. 6) The formula of Peirce for the acceleration of gravity
on the earth's surface is

g
= 9.78085(1+0.0052375 sin2 /)(i

-
0.0000003 14 e) (9)i

in which g is the acceleration in meters per second per second at a

place whose latitude is / degrees and whose elevation is e meters

above the sea level. The greatest value of g is at the sea level at

the pole; here / = 90 and e = o, whence g
=

9.8322. The least

value of g in hydraulic practice is found on high lands at the

equator ;
here / = o and e = 4000 meters, whence g

=
9.7683. The

mean of these is 9.800, which closely agrees with that found in

Art. 6, since 32.16 feet equals 9.802 meters
; accordingly

g
= 9.800 meters per second per second

is the value of the acceleration that will be used in the metric work

of this book. From this are found

V2g = 4.427 i/2g = 0.05102 (9),

Table 9c gives multiples of these values which will often be of use

in numerical computations.

TABLE 9c. ACCELERATION DUE TO GRAVITY

Metric Measures

No.
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in a pipe 38 centimeters in diameter and 6 meters long, Table F gives

0.1134 square meter for the sectional area, the volume is then 0.6804

cubic meter, and the weight is 680 kilograms, the fourth figure

being omitted because nothing is known about the temperature

or purity of the water. In general, hydraulic computations are

much easier in the metric than in the English system.

Prob. 9a. Compute the acceleration of gravity at Quito, Ecuador,

which is in latitude o 13' and at an elevation of 2850 meters above

sea level.

Prob. 96. What is the pressure in kilograms per square centimeter

at the base of a column of water 95.4 meters high ?

Prob. 9c. Compute the velocity of sound in fresh distilled water at the

temperature of 12 centigrade, and also its mean velocity in salt water.

Prob. 9d. How many cubic meters of water are contained in a pipe

315 meters long and 15 centimeters in diameter? How many kilograms?
How many metric tons ?

Prob. 9e. What is the boiling-point of water when the mercury ba-

rometer reads 735 millimeters ? How high will water rise in a vacuum tube

at a place where the boiling-point of water is 92 centigrade ?
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CHAPTER 2

HYDROSTATICS

ART. 10. TRANSMISSION OF PRESSURE

One of the most remarkable properties of a fluid is its capacity
of transmitting a pressure, applied at one point of the surface of

a closed vessel, unchanged in intensity, in all directions, so that

the effect of the applied pressure is to cause an equal force per

square inch upon all parts of the enclosing surface. Pascal, in

1646, was the first to note that great forces could be produced
in this manner; he saw that the

total pressure increased propor-

tionally with the area of the sur-

face. Taking a closed barrel filled

with water, he inserted a small

vertical tube of considerable length

tightly into it, and on filling the

tube the barrel burst under the

great pressure thus produced on its sides, although the weight
of the water in the tube was quite small. The first diagram in

Fig. 100 represents Pascal's barrel, and it is seen that the unit-

pressure in the water at B is due to the head AB and independent
of the size of the tube AC.

Pascal clearly saw that this property of water could be em-

ployed in a useful manner in mechanics, but it was not until 1796
that Bramah built the first successful hydraulic press. This

machine has two pistons of different sizes, and a force applied to

the small piston is transmitted through the fluid and produces
an equal unit-pressure at every point on the large piston. The

applied force is here multiplied to any required extent, but the

work performed by the large piston cannot exceed that imparted
to the fluid by the small one. Let a and A be the areas of the

Fig. 10a.
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Fig. 106.

small and large pistons, and p the pressure in pounds per square

unit applied to a
;
then the unit-pressure in the fluid is p, and the

total pressure on the small pis-

ton is pa, while that on the large

piston is pA . Let the distances

through which the pistons move

during one stroke be d and D.

Then the imparted work is pad,

and the performed work, neglect-

ing frictional resistances, is pAD.

Consequently ad = AD, and

since a is small as compared with A, the distance D must be

small compared with d. Here is found an illustration of the

popular maxim
"
What is lost in velocity is gained in force.

"

Numerous applications of this principle are made in 'hydraulic

presses for compressing materials and forging steel, as also in jacks,

accumulators, and hydraulic cranes. The Keely motor, one of the

delusions of the nineteenth century, is said to have employed this

principle to produce some of its effects
; very small pipes, supposed by

the spectators to be wires conveying some mysterious force, being

used to transmit the pressure of water to a receiver where the total

pressure became very great in consequence of greater area.

In consequence of its fluidity the pressure existing at any

point in a body of water is exerted in all directions with equal

intensity. When water is confined by a bounding surface, as

in a vessel, its pressure against that surface must be normal at

every point, for if it were inclined, the water would move along

the surface. When water has a free surface, the unit-pressure at

any depth depends only on that depth and not on the shape of

the vessel. Thus in the second diagram of Fig. 10a the unit-

pressure at C produced by the smaller column of water aC is the

same as that caused by the larger column AC, and the total ver-

tical pressure on the upper side of the base B is the product of

its area into the unit-pressure caused by the depth AB.

Prob. 10. What is the upward pressure on the lower side of the base B
in Fig. 10a ? Explain why this is less than the downward pressure on the

upper side of the base B.
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ART. 11. HEAD AND PRESSURE

The free surface of water at rest is perpendicular to the direc-

tion of the force of gravity, and for bodies of water of small extent

this surface may be regarded as a plane. Any depth below this

plane is called a "head," or the head upon any point is its vertical

depth below the level surface. In Art. 10 it was seen that the

unit-pressure at any depth depends only on the head and not on

the shape of the vessel. Let h be the head and w the weight of

a cubic unit of water
;
then at the depth h one horizontal square

unit bears a pressure equal to the weight of a column of water

whose height is h, and whose cross-section is one square unit,

or wh. But the pressure at this point is exerted in all directions

with equal intensity. The unit-pressure p at the depth h then is

wh, and the depth, or head, for a unit-pressure p is p/w, or

p = wh h = p/w (ll)i

If // be expressed in feet and p in pounds per square foot, these

formulas become, using the mean value of w,

p = 62.5^ h = o.oi6p

Thus pressure and head are mutually convertible, and in fact

one is often used as synonymous with the other, although really

each is proportional to the other. Any unit-pressure p can be

regarded as produced by a head h, which is frequently called

the
"
pressure head."

In engineering work p is usually taken in pounds per square

inch, while h is expressed in feet. Thus the pressure in pounds

per square foot is 62. $h, and the pressure in pounds per square

inch is yl? of this, or

p
=
0.4340^ h = 2.304^ (11)2

These rules may be stated in wo'ds as follows:

i foot head corresponds to 0.434 pounds per square inch;

i pound per square inch corresponds to 2.304 feet head.

These values, be it remembered, depend upon the assumption

that 62.5 pounds is the weight of a cubic foot of water, and hence
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are liable to variation in the third significant figure (Art. 4). The

extent of these variations for fresh water maybe seen in Table 11,

which gives multiples of the above values, and also the corre-

sponding quantities when the cubic foot is taken as 62.3 pounds.

TABLE 11. HEADS AND PRESSURES

Head
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Prob. 11. How many pounds per square inch correspond to a head of

230 feet ? How many feet head correspond to a pressure of 100 pounds per

square inch?

ART. 12. Loss OF WEIGHT IN WATER

It is a familiar fact that bodies submerged in water lose part

of their weight ;
a man can carry under water a large stone which

would be difficult to lift in air, and timber when submerged has

a negative weight or tends to rise to the surface. The following

is the law of loss which was discovered by Archimedes, about

250 B.C., when considering the problem of King Hiero's crown :

The weight of a body submerged in water is less than its

weight in air by the weight of a volume of water which is equal

to the volume of the body.

To demonstrate this, consider that the submerged body is

acted upon by the water pressure in all directions, and that the

horizontal components of these pressures must balance. Any
vertical elementary prism is subjected to an upward pressure upon
its base which is greater than the downward pressure upon its

top, since these pressures are due to the

heads. Let h\ be the head on the top of

the elementary prism and hi that on its

base, and a the cross-section of the prism ;

then the downward press re is wah\ and

the upward pressure is wafa. The differ-

ence of these, wa(hzhi) is the resultant

upward water pressure, and this is equal to the weight of a

column of water whose cross-section is a and whose height is

that of the elementary prism. Extending this theorem to all

the elementary prisms, it is concluded that the weight of the

body in water is less than its weight in air by the weight of an

equal volume of water.

It is important to regard this loss of weight in constructions

under water. If, for example, a dam of loose stones allows the

water to percolate through it, its weight per cubic foot is less than

its weight in air, so that it can be more easily moved by horizontal

forces. As stone weighs about 150 pounds per cubic foot in air,
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its weight in water is only about 150 62 = 88 pounds per cubic

foot. If a cubic foot of sand, having voids amounting to 40 per

cent of its volume, weighs no pounds, its loss of weight in water

is 0.60 X 62.5
=

37.5 pounds, so that its weight in water is

110 37.5
=

72.5 pounds.

The ratio of the weight of a substance to that of an equal

volume of water is called the specific gravity of the substance,

and this is easily computed from the law of Archimedes after

weighing a piece of it in air and then in water
; or, if w be the

weight of a cubic unit of water and w' the weight of a cubic unit

of any substance, the ratio w'/w is the specific gravity of the

substance.

Prob. 12. A box containing 1.17 cubic feet weighs 19.3 pounds when

empty and 133.5 when filled with sand. It is then found that 29.7 pounds

of water can be poured in before overflow occurs. Find the percentage

of voids in the sand, the specific gravity of the sand mass, and the specific

gravity of a grain of sand.

ART. 13. DEPTH OF FLOTATION

When a body floats upon water, it is sustained by an upward

pressure of the water equal to its own weight, and this pressure

is the same as the weight of the volume of water displaced by
the body. LetW be the weight of the floating body in air, and

W be the weight of the displaced water
;
then W = W. Now

let z be the depth of flotation of the body ;
then to find its value

for any particular caseW is to be expressed in terms of the linear

dimensions of the body, and W in terms of the depth of flotation z.

For example, a timber box caisson is 20 X 101 feet in outside

dimensions and weighs 33 400 pounds. The weight of displaced

water in pounds is 62^ X 20 X loj X z, and equating this to

33 400 gives z = 2.54 feet for the depth of flotation.

To find the depth of flotation for a cylinder lying horizontally,

let w' be its weight per cubic unit, / its length, and r the radius of

its cross-section. The depth of flotation is DE, or letting be the

angle ACE, then z = (i cos0)r. The weight of the cylinder is

W = Trr
2
/ w', and that of the displaced water is

W= O2 arc0 - r
2 sin0 cos0)/ w
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Equating the values of W and W, and substituting for sin0 cos0

its equivalent i sin 20, there results

2 arc0 sin 2$ = 2 ITS

in which s represents the ratio w'/w or the specific gravity of the

material of the cylinder. From this equation is to be found by
trial for any particular case, and then z is computed. For example,

if w' = 26.5 pounds per cubic foot,

then s is 0.424, and

2 arc0 sin 20 2.664 =

To solve this equation, values are

to be assumed for 0, until one is

found that satisfies it; thus from 'EE2

Table G, Fig. n.

for 83 2.897 0.242 2.664 0.009

for = 835 2.906 0.234 2.664 = -h 0.008

Therefore lies between 83 and 83 15', and is probably about

83 8'. Hence the depth of flotation is z = (i o.i2o)r = o,88r,

or if the diameter is one foot, the depth of flotation is 0.44 feet.

In a similar way it may be shown that the depth of flotation of

a sphere of radius r and specific gravity s is given by the cubic equa-

tion z3 3 rz
2
4- 4 t^s = o. When r = 4 feet and s = 0.65, it may be

found by trial that z = 1.21 feet.

Prob. 13. A wooden stick 1} inches square and 10 feet long is to be

used for a velocity float which is to stand vertically in the water. How many
square inches of sheet lead i*z inch thick must be tacked on the sides of this

stick so that only 4 inches will project above the water surface ? The wood

weighs 31.25 and the lead 710 pounds per cubic foot.

ART. 14. STABILITY OF FLOTATION

The equilibrium of a floating body is stable when it returns

to its primitive position after having been slightly moved there-

from by extraneous forces
;

it is indifferent when it floats in any

position, and it is unstable when the slightest force causes it to

leave its position of flotation. For instance, a short cylinder

with its axis vertical floats in stable equilibrium, but a long

cylinder in this position is unstable, and a slight force causes it

to fall over and float with its axis horizontal in indifferent equilib-
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rium. It is evident that the equilibrium is the more stable the

lower the center of gravity of the body.

The stability depends in any case upon the relative position of the

center of gravity of the body and its center of buoyancy, the latter

being the center of gravity of the displaced water. Thus in Fig. 14

let G be the center of gravity of the body and let C be its center of

buoyancy when in an upright position. Now if an extraneous force

causes the body to tip into the posi-

tion shown, the center of gravity
remains at G, but the center of buoy-

ancy moves to D. In this new posi-

tion of the body it is acted upon by
the forces W and W, which are equal

and parallel but opposite in direction.

These forces form a couple which

tends either to restore the body to the upright position or to cause it

to deviate farther from that position. Let the vertical through D
be produced to meet the center line CG in M. If M is above G,

the equilibrium is stable, as the forces W and W tend to restore it

to its primitive position ;
if M coincides with G, the equilibrium is

indifferent
;
and if M be below G, the equilibrium is unstable.

The point M is called the "metacenter," and the theorem may be

stated that the equilibrium is stable, indifferent, or unstable according
as the metacenter is above, coincident with, or below the center of grav-

ity of the body. The measure of the stability of a stable floating

body is the moment of the couple formed by the forces W and W' . But

GM is proportional to the lever arm of the couple, and hence the quan-

tity W X GM may be taken as a measure of stability. The stability,

therefore, increases with the weight of the body, and with the distance

of the metacenter above the center of gravity. (See Art. 189.)

The most important application of these principles is in the design
of ships, and usually the problems are of a complex character which can

only be solved by tentative methods. The rolling of the ship due to

lateral wave action must also receive attention, and for this reason

the center of gravity should not be put too low.

Prob. 14. A square prism of uniform specific gravity s has the length
h and the cross-section b2 . When this prism is placed in water with its axis

vertical, it may be shown that it is in stable, indifferent, or unstable equilib-

rium according as 62 is greater, equal to, or less than 6 h?s (1 5).
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ART. 15. NORMAL PRESSURE

The total normal pressure on any immersed surface may be

found by the following theorem :

The total normal pressure is equal to the product of the

weight of a cubic unit of water, the area of the surface, and

the head on its center of gravity.

To prove this let A be the area of the surface, and imagine it

to be composed of elementary areas, ai, 02, to, etc., each of which

is so small that the unit-pres-

sure over it may be taken as

uniform; let hi, fa, hz , etc.,

be the heads on these elemen-

tary areas, and let w denote

the weight of a cubic unit of

water. The unit-pressures at

the depths hi, h, h, etc., are whi, wh^, wh^, etc. (Art. 11), and

hence the normal pressures on the elementary areas, al} <%, (%, etc.,

are wa^ waji^, weighs, etc. The total normal pressure P on the

entire surface then is

P = w(aihi -f adh + a3/k 4- etc.)

Now let h be the head on the center of gravity of the surface;

then, from the definition of the center of gravity,

aihi -f (khz + a3h3 + etc. = Ah

Therefore the normal pressure is

P=wAh (15)

which proves the theorem as stated.

This rule applies to all surfaces, whether plane, curved, or

warped, and however they be situated with reference to the water

surface. Thus the total normal pressure upon the surface of an

immersed cylinder remains the same whatever be its position,

provided the depth of the center of gravity of that surface be

kept constant. It is best to take h in feet, A in square feet, and

w as 62.5 pounds per cubic foot
;
then P will be in pounds. In
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case surfaces are given whose centers of gravity are difficult to

determine, they should be divided into simpler surfaces, and then

the total normal pressure is the sum of the normal pressures on

the separate surfaces.-

The normal pressure on the base of a vessel filled with water

is equal to the weight of a cylinder of water whose base is the base

of the vessel, and whose height is the depth of water. Only in

the case of a vertical cylinder does this become equal to the weight

of the water, for the pressure on the base of a vessel depends upon
the depth of water and not upon the shape of the vessel. Also

in the case of a dam, the depth of the water and not the size of the

pond, determines the amount of pressure.

When a surface is plane, the total normal pressure is the result-

ant of all the parallel pressures acting upon it. This is not true

for curved surfaces
; for, as the pressures have different directions,

their resultant is not equal to their numerical sum, but must be

obtained by the rules for the composition of forces. For exam-

ple, when a sphere of diameter d is filled with water, the total

normal pressure as found by the formula (15) is

P = w Trd2 \d = % WTrd
3

but the resultant pressure is nothing, for the elementary normal

pressures act in all directions so that no tendency to motion

exists. The weight of water in this sphere is J wird?, or one-

third of the total normal pressure, and the direction of this is

vertical.

Prob. 15. An ellipse, with major and minor axes equal to 12 and 8

feet, is submerged so that one extremity of the major axis is 3.5 and the other

8.5 feet below the water surface. Find the normal pressure on one side.

ART. 16. PRESSURE IN A GIVEN DIRECTION

The pressure against an immersed plane surface in a given

direction may be found by obtaining the normal pressure by Art.

15 and computing its component in the required direction, or by
means of the following theorem :
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Fig. ie.

The horizontal pressure on any plane surface is equal to the

normal pressure on its vertical projection ;
the vertical pressure

is equal to the normal pressure on its horizontal projection ;
and

the pressure in any direction is equal to the normal pressure on

a projection perpendicular to that direction.

To prove this let A be the area of the given surface, represented

by AA in Fig. 16a, and P the normal pressure upon it, or P = wAh.
Now let it be required to find the pres-

sure P' in a direction making an angle

with the normal to the given plane.

Draw A
r

A' perpendicular to the direc-

tion of P', and let A' be the area of

the projection of A upon it. The

value of P' then is

P' = P cos0 = wAh cos0

But AcosO is the value of A' by the construction. Hence

P' = wA'h (16)

and the theorem is thus demonstrated.

This theorem does not in general apply to curved surfaces.

But in cases where the head of water is so great that the pressure

may be regarded as uniform it is also true for curved sur-

faces. For instance, consider a

cylinder or sphere subjected on

every elementary area to the unit-

pressure p due to the high head h,

and let it be required to find the

pressure in the direction shown by

0i, 0a, and 03 in Fig. 166. The

pressures p\, pt, p*, etc., on the ele-

mentary areas ai, a2 ,
a3 > etc., have

Fig. 166. the values

PI
=

P&I, pz-
=

pd-ii P^
~

pay, etc.,

and the components of these in the given direction are

0i
=

pai cos0i, 02
=

/>02 cos02, 03
=

pa* cos03 , etc.,
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whence the total pressure P
1
in the given direction is

P' = p(di cos0i + <h cos02 + a3 cos#3 + etc.)

But the quantity in the parenthesis is the projection of the

given surface upon a plane perpendicular to the given direction,

or MN. Hence there results

which is the same rule as for plane surfaces.

For the case of a water pipe let p be the interior pressure per

square inch, / its thickness, and d its diameter in inches. Then
for a length of one inch the force tending to rupture the pipe

longitudinally is pd. The tensile unit-stress 5 in the walls of the

pipe acting over the area 2t constitutes the resisting force 2tS.

Since these forces are equal, it follows that 281 = pd is the funda-

mental equation for the discussion of the strength of water pipes
under static water pressure. For example, when the tensile

strength of cast iron is 20 ooo pounds per square inch, the unit-

pressure p required to burst a pipe 24 inches in diameter and 0.75

inches thick is 1250 pounds per square inch, which corresponds
to a head of 2880 feet.

Prob. 16. A circular plate 5 feet in diameter is immersed so that the head

on its center is 18 feet, its plane making an angle of 30 with the vertical.

Compute the horizontal and vertical pressures upon one side of it.

ART. 17. CENTER OF PRESSURE ON RECTANGLES

The center of pressure on a surface immersed in water is the

point of application of the resultant of all the normal pressures

upon it. The simplest case is the following :

When a rectangle is placed with one end in the water sur-

face, the center of pressure is distant from that end two-thirds

of the length of the rectangle.

This theorem will be proved by the help of the graphical illus-

tration shown in Fig. 17a. The rectangle, which in practice

might be a board, is placed with its breadth perpendicular to the

plane of the drawing, so that AB represents its edge. It is re-

quired to find the center of pressure C. For any head h the unit-
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Fig. 17a.

pressure is wh (Art. 15), and hence the unit-pressures on one side

of AB may be graphically represented by arrows which form a

triangle. Now when a force P equal to the total pressure is

applied on the other side of the

rectangle to balance these unit-

pressures, it must be placed

opposite to the center of gravity
of the triangle. Therefore AC
equals two-thirds of AB, and the

rule is proved. The head on C
is evidently also two-thirds of

the head on B.

Another case is that shown in Fig. 176, where the rectangle,

whose length is BiB2 ,
is wholly immersed, the head on BI being

A hi} and on B2 being h2 . Let

ABi =
bi, AC =

y, and

AB2
= bz . Now the normal

^-^^^ !/ pressure Plt on ABr is ap-

plied at the distance I bt

B* from A, and the normal

pressure P2 on AB2 is applied at the distance f b2 from A. The
normal pressure P on BiB2 is the difference of PI and P2 ,

or

P = P2 PI. Also by taking moments about A as an axis,

FIG. 176.

Now, by Art. 15, the normal pressures P2 and Pl for a rectangle

one unit in breadth are P2
= \ wb^ and Pl

= J wbji^ whence

the total normal pressure is P = \ w(b2hz MO; and accordingly
the center of pressure is given by

= 3

a* -

When 6 is the angle of inclination of the plane to the water sur

face, the values of h2 and hi are b2 sin# and &isin#. Accord

ingly the expression becomes

y-\ V-V (17),
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Again, if k'. is the head on the center of pressure, y = h' cosectf,

b2 = lii cosec0, and bi
=

hi cosec#. These inserted in the last

equation give ^ fa*
- hf n ~n 3' v*yi

hz
2 - h2

These formulas are very convenient for computation, since the

squares and cubes may be taken from tables.

If hi equals h2 ,
the above formula becomes indeterminate,

which is due to the existence of the common factor h2 hi in

both numerator and denominator of the fraction; dividing out

this common factor, it becomes

_ 2

from which, if h2
= hi =

h, there is found the result h = //.

Prob. 17. In Fig, I7a let the length of AB be 8.5 feet and its inclination

to the vertical be 45 degrees. Find the depth of the center of pressure.

ART. 18. GENERAL RULE FOR CENTER OF PRESSURE

For any plane surface immersed in a liquid, the center of

pressure may be found by the following rule :

Find the moment of inertia of the surface and its statical

moment, both with reference to an axis situated at the intersec-

tion of the plane of the surface with the water level. Divide

the former by the latter and the quotient is the perpendicular

distance from that axis to the center of pressure.

The demonstration is analogous to that in the last article.

Let BiBz in Fig. \7b be the trace of the plane surface, which itself

is perpendicular to the plane of the drawing, and C be the center

of pressure, at a distance y from A where the plane of the surface

intersects the water level. Let a lt a2 , as, etc., be elementary
areas of the surface, and ki, h2 ,

k3 , etc., the heads upon them,
which produce the normal elementary pressures, wajti,

<wa2h2y

wa3h3 ,
etc. Let ylt y2 , y3 , etc., be the distances from A to these

elementary areas. Then taking the point A as a center of mo-

ments, the definition of center of pressure gives the equation

+ wa2h2 + washz + etc.) y = wa\h\yi + wa2h2y2 -f- wajizy* + etc.
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Now let 6 be the angle of inclination of the surface to the

water level
;

then h\
=

y\ sin0, //_>
= v2 sintf, /r3

=
y3 sintf, etc.

Hence, inserting these values, the expression for y is

= fli^i
2 + 023*2* +aV 4- etc.

a\y\ + <hy* + ayt + etc.

The numerator of this fraction is the sum of the products obtained

by multiplying each element of the surface by the square of its

distance from the axis, which is called the moment of inertia of

the surface. The denominator is the sum of the products ob-

tained by multiplying each element of the surface by its distant r

from the axis, which is called the statical moment of the surface.

Therefore moment of inertia /'

statical moment
(18)

is the general rule for finding the position of the center of pressure

of an immersed plane surface.

The statical moment of a surface is simply its area multiplied

by the distance of its center of gravity from the given axis. The

moments of inertia of plane surfaces with reference to an axis

through the center of gravity are deduced in works on theoretical

mechanics; the following are a few values, the axis being parallel to

the base of the rectangle or triangle :

for a rectangle of base b and depth d, / = 1*2 bd3

for a triangle of base b and altitude d, I = 3*5 bd3

for a circle with diameter d, / = <& nd4

To find from these the moment of inertia with reference to a par-

allel axis, the well-known formula /' / -f- Ak~ is to be used,

where A is the area of the surface,

k the distance from the given axis to

the center of gravity of the surface,

and /' the moment of inertia re- .

quired. ~7

For example, let it be required

to find the center of pressure of a

vertical circle immersed so that the head on its center is

equal to its radius. The area of the circle is \ ird2
,
and its
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statical moment with reference to the upper edge is \ ird
2 X \ d.

Then from (18) l

or the center of pressure is at a distance f d below the center of

the circle.

Prob. 18. Find the depth of flotation for the triangle in Fig. 18. Also

find the position of the center of pressure upon it in terms of z.

ART. 19. PRESSURES ON GATES AND DAMS

In the case of an immersed plane the water presses equally

upon both sides so that no disturbance of the equilibrium results

from the pressure. But in case the water is at different levels on

opposite sides of the surface the opposing pressures are unequal.

For example, the cross-section of a self-

acting tide-gate, built to drain a salt

marsh, is shown in Fig. 190. On the

ocean side there is a head of hi above

the sill, which gives for every linear foot

of the gate the horizontal pressure

IP-

Fig. 19<z.

which is applied at the distance \ hi

above the sill. On the other side the

head on the sill is hz, which gives the

horizontal pressure Pz = \ whz
2

acting

in the opposite direction to that of PI. The resultant horizon-

tal pressure is P=Pi~P2
= ^w (hi

2 -
hf)

and if z be the distance of the point of application of P above

the sill, the equation of moments is

from which z can be computed. For example, if hi is 7 feet and

hi is 4 feet, the resultant pressure on one linear foot of the gate

is found to be 1031 pounds and its point of application to be 2.82

feet above the sill. The action of this gate in resisting the water

pressure is like that of a beam under its load, the two points of
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support being at the sill and the hinge. If h is the height of the

gate, the reaction at the hinge is Pz//r,and from the above expres-

sion for Pz it is seen that this reaction has its greatest value when

hi becomes equal to h and hi is zero. In the case of the vertical

gate of a canal lock, which swings horizontally like a door, a

similar problem arises and a similar conclusion results.

When the water level behind a masonry dam is lower than

its top, as in Fig. 196, the water pressure on the back is normal

to the plane AB and for computations this may be resolved into

Fig. 19c.

horizontal and vertical components. Let h be the height of water

above the base, the angle which the back makes with the vertical,

then from Arts. 15-16 the values of these pressures, for one

linear unit of the dam, are

Normal Pressure N = w h sec# \ h = \ wti* sec0

Horizontal Component H N cos0 = \ wh
z

Vertical Component V = N sin# = \ wh* tan.0

and from Art. 17 the point of application of these pressures is at

a distance J h above the base. Except in the case of hollow dams

only the horizontal component H need usually be considered, since

the neglect of V is on the side of safety.

When the water runs over the top of a dam, as in Fig. 19c,

let h be the height of the dam and d the depth of water on its

crest. Then

Normal Pressure N=wh sec0 (</+J h)
= %wh(h+2d)sec0

Horizontal ComponentH =N cos0 = J wh(h+ 2d)

Vertical Component V~N sin0 = \ wh(h+ 2J)tan0

and, from Art. 17, the point of application above the base BD is

h+2d
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when d =
o; these expressions for H and p become i wh2 and J d.

If d is infinite, the value of p reduces to \ h and hence in no case

can the pressure N be applied as high as the middle of the height

of the dam. Unless the dam be hollow or 6 be greater than 30
it will usually be proper to neglect V and to consider only H.

It is not the place here to. enter into the discussion of the subject of

the design of masonry dams, but two ways in which they are liable to

fail may be noted. The first is that of sliding along a horizontal joint,

as BD; here the horizontal component of the thrust overcomes the

resisting force of friction acting along the joint. If W is the weight of

masonry above the joint, and / the coefficient of friction, the resist-

ing friction is JW, and the dam will slide if the horizontal component
of the pressure is equal to or greater than this. The condition for failure

by sliding then isH=jW. For example, consider a masonry dam of

rectangular cross-section which is 4 feet wide and h feet high, the water

being level with its top. Let its weight per cubic foot be 140 pounds,

and let it be required to find the height h for which it would fail by

sliding along the base, the coefficient of friction being 0.70. The

horizontal water pressure is i X 62.5 X W and the resisting fric-

tion is 0.7 X 140 X 4 X h. Placing these equal, there is found for the

height of the dam h = 12.5 feet.

The second method of failure of a masonry dam is by over-

turning, or by rotating about the toe D. This occurs when the moment
of H equals the moment of W with respect to D, or if p and q are the

lever arms dropped from D upon the directions of H and W, the condi-

tion for failure by rotation is Hp=Wq. For example, when it is

required to find the height of the above rectangular dam so that it

will fail by rotation, the lever arms p and q are \ h and 2 feet,

and the equation of moments with respect to the toe of the dam is

\ X 62.5 X h* X i h = 140 X 4 X h X 2

from which there is found A =10.4 feet. The horizontal water

pressure for one linear foot of the dam at the instant of failure is

J w/f2=338o pounds.

In the case of an overfall dam, as in Fig. 19c, the falling sheet of

water produces a partial vacuum when air cannot freely enter behind

it, and thus the force H, tending to produce sliding, is increased. In

the design of a dam consideration must also be given to the upward

pressure of that water which gains access either beneath its foundation
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or directly into its mass. This upward pressure is equivalent
loss of weight due to percolating water, as was described in Art. 12.

Prob. 19. A water pipe passing through

a masonry dam is closed by a cast-iron cir-

cular valve AB, which is hinged at .1. and

which can be raised by a vertical chain BC.

The diameter of the valve is 3 feet, its plane

makes an angle of 27 with the vertical, and

the depth of its center below the water level

is 10.5 feet. Compute the normal water

pressure P, and the distance of the center of

pressure from the hinge .1 . Disregarding the

weight of the valve and chain, compute the

force F required to open the valve. When the weight of the chain is

23 pounds and that of the valve 180 pounds, compute the force F.

ART. 20. HYDROSTATICS IN METRIC MEASURES

(Art. 11) When the head h is in meters and the unit-pressure

p is in kilograms per square meter, the formulas (ll)i become

p = loooh h = o.ooi/>

In engineering practice p is usually taken in kilograms per square

centimeter, while h is expressed in meters. Then

p = o.ih h=iop (20)

Stated in words these practical rules are :

i meter head corresponds to o. i kilogram per square centimeter

i kilogram per square centimeter corresponds to 10 meters head

These values depend upon the assumption that 1000 kilograms is

the weight of a cubic meter of water, and hence results derived from

them are liable to an uncertainty in the third or fourth significant

figure, as Table 20 shows.

The atmospheric pressure of 1.033 kilograms per square centi-

meter is to be added to the pressure due to the head whenever it is

necessary to regard the absolute pressure. For example, if the air

is exhausted from a small globe so that its pressure is only 0.32 kilo-

gram per square centimeter and it be submerged in water to a depth

of 86 meters, the absolute pressure per square centimeter on the globe

is o.i X 86 + 1.033 9-633 kilograms, and the resultant effective

pressure per square centimeter is 9.6330.32 = 9.313 kilograms.
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TABLE 20. HEADS AND. PRESSURES

Metric Measures

Head
in Meters
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(Art. 19) Consider a rectangular masonry dam which \\<

2400 kilograms per cubic meter and which is 1.4 meters thick. I-irM,

let it be required to find the height of water for which it would fail

by sliding, the coefficient of friction being 0.75. The horizontal water-

pressure is j X 1000 X h~, and the resisting friction is 0.75 X 2400 X
1.4 X h\ placing these equal, there is found h = 5.04 meters. Sec-

ondly, to find the height for which failure will occur by rotation, the

equation of moments is

\ X 1000 X h2 X J h = 2400 X 1.4 X h X 0.75

from which there is found h = 3.89 meters. The horizontal water-

pressure for one linear meter of this dam is \ whz= 7560 kilograms.

Prob. 20a. In a hydrostatic press one-half of a metric horse-power is

applied to the small piston. The diameter of the large piston is 30 centi-

meters and it moves 2 centimeters per minute. Compute the pressure

in the liquid.

Prob. 206. What is the specific gravity of dry hydraulic cement of

which 20.6 cubic centimeters weigh 63.2 grams? If a cube of stone 12.4

centimeters on each edge weighs 4.88 kilograms, what is its specific gravity ?

Prob. 20c. In Fig. 19a let the head on one side of the gate be 2.5 and on

the other side 0.6 meters above the sill. Find the resultant pressure for

one linear meter of the gate and the distance of its point of application above

the sill.
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CHAPTER 3

THEORETICAL HYDRAULICS

ART. 21. LAWS OF FALLING BODIES

Theoretical Hydraulics treats of the flow of water when

unretarded by opposing forces of friction. In a perfectly smooth

inclined trough water would flow with accelerated velocity and

be governed by the same laws as those for a body sliding down

a frictionless inclined plane. Such a flow is, however, never

found in practice, for all surfaces over which water moves are

more or less rough. Friction retards the motions caused by

gravity so that the theoretic velocities deduced in this chapter

constitute limits which cannot be exceeded by the actual veloc-

ities. Many of the laws governing the free fall of bodies in a

vacuum are similar to those of both theoretical and practical

hydraulics, and hence they will here be briefly discussed.

A body at rest above the surface of the earth immediately
falls when its support is removed. When the fall occurs in a

vacuum, its velocity at the end of one second is g feet, the mean
value of g being 32.16 feet per second per second, and at the end

of / seconds its velocity is V =
gt. The distance passed through

in the time t is the product of the mean velocity \ V by the

number of seconds, or h = J gt
2

. Eliminating / from these two

equations gives

V =
^/~2gh or h = V2

/2g (21) t

which show that the velocity varies with the square root of the

height and that the height varies as the square of the velocity.

When a falling body has the initial velocity u at the begin-

ning of the time t, its velocity at the end of this time is V = u + gt

and the distance passed over in that time is h = ut + \ gt
2

.

Eliminating / from these equations gives

V= \/2gh + u2 or h=(V2 -u2
)/2g (21),
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as the relations between V and h for this case. These formulas

are also true whatever be the direction of the initial velocity u.

When a body of weight W is at the height h above a given

horizontal plane, its potential energy with respect to this plane

i> I17/. When it falls from rest to this plane, the potential energy

is changed into the kinetic energy WV2
/2g if no work has

been done against frictional resistance, and therefore V2 =
2gh.

When it has a velocity u in any direction at the height // above

the plane, its energy there is partly potential and partly kinetic,

the sum of these being Wh + W ' u2
/2g ;

on reaching the plane

it has the kinetic energy WV2
/2g. Placing these equal, there

results V- = 2gh + u2
,
as found above by another method. In

general, reasoning from the standpoint A
of energy is more satisfactory than O-l^.
that in which the element of time is /~\

V-A>V8

employed. /'i ^>A.

The general case of a body moving ^
toward the earth is represented in

Fig 2 i.

Fig. 21. When the body is at A, it is

at a height //i above a certain horizontal plane and has the

velocity vif When it has arrived at B, its height above the

plane is h^ and its velocity is v2 . In the first position the sum

of its potential and kinetic energy with respect to the given

horizontal plane is

2g

and in the second position the sum of these energies is

If no energy has been lost between the two positions, these two

expressions are equal, and hence

This equation is the simplest form of Bernoulli's theorem (Art.

31). It contains two heights and two velocities, and when
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three of these quantities are given, the fourth can be found
;

thus, if vi, hij and Jh are given, the value of v2 is

where h^ h^ is the vertical height of A above B. With proper

changes in notation this expression reduces to (21) 2 ,
which is for

the case where the horizontal plane passes through B, and to (21)^

which is the case where there is no initial velocity.

Prob. 21. A body enters a room through the ceiling with a velocity of 47

feet per second, and in a direction making an angle of 17 with the ver-

tical. If the height of the room is 16 feet, find the velocity of the body
as it strikes the floor, resistances of the air being neglected.

ART. 22. VELOCITY OF FLOW FROM ORIFICES

When an orifice is opened, either in the base or side of a vessel

containing water, the water flows out with a velocity which is

greater for high heads than for low heads. The theoretic velocity

of flow is given by the theorem established by Torricelli in 1644 :

The theoretic velocity of flow from the orifice is the

same as that acquired by a body after having fallen from

rest in a vacuum through a height equal to the head of

water on the orifice.

One proof of this theorem is by experience. When a vessel is

arranged, as in the first diagram of Fig. 22, so that a jet of water

from an orifice is directed vertically upward, it is known that it

never attains to the height of

the level of the water in the

vessel, although under favor-

able conditions it nearly reaches

that level. It may hence be

inferred that the jet would

actually rise to that height

Fig. 22. were it not for the resistance

of the air and the friction of

the edges of the orifice. Now, since the velocity required to

raise a body vertically to a certain height is the same as that

acquired by it in falling from rest through that height, it is re-
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garded as established that the velocity at the orifice is that stated

in the theorem.

The following proof rests on the law of conservation of energy.

Let, as in the second diagram of Fig. 22, the water surface in a vessel

be at A and let the flow through the orifice occur for a very short in-

terval of time during which the water surface descends to AI. Let

W be the weight of water between the planes A and A\ t
which is evi-

dently the same as that which flows from the orifice during the short

time considered. Let W\ be the weight of water between the planes

AI and J5, and hi the height of its center of gravity above the orifice.

Let h be the height of A above the orifice, and 8h the small distance

between .1 and AI. At the beginning of the flow the water in the vessel

has the potential energy WiHi +W (h\$h) with respect to B.

V being the velocity at the orifice, the same water at the end of the

short interval of time has the energy W\hi-t- W V2
/2g. By the law

of conservation these are equal if no energy has been expended in

overcoming frictionai resistances
;

thus h \ Bh = V2
/2g. Here &h

is very small if the area A is large compared with the area of the ori-

fice, and thus V2 =
2gh, which is the same as for a body falling from

rest through the height h. Or h \ Bh may be regarded as an aver-

age head corresponding to an average velocity V, so that in general

F2
/

'

2g is equal to the average head on the orifice.

For any orifice, therefore, whether its plane is horizontal,

vertical, or inclined, provided the head h is so large that, it has

practically the same value for all parts of the orifice, the relation

between V and h is

V = V^gh or h = V*/2g (22) t

the first of which gives the theoretic velocity of flow due to a given

head, while the second gives the theoretic head that will produce
a given velocity. The term "velocity-head" will generally be

used to designate the expression V*/2g, this being the height to

which the jet would rise if it were directed vertically upward and

there were no frictionai resistances. Using for g the mean value

32.16 feet per second per second (Art. 7), these formulas become

7 = 8.020 VA // = 0.015557* (22)2

in which h must be in feet and V in feet per second. The follow-

ing table gives values of the velocity V corresponding to a given
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head h and also values of the velocity-head h corresponding to a

given velocity V. It is seen that small heads produce high theo-

retic velocities. The relation between h and V is the same as that

between the ordinate and abscissa of the common parabola when

the origin is at the vertex. It may also be noted that the dis-

cussion here given applies not only to water but to any liquid ;

thus F2 = 2gh is theoretically true for alcohol and mercury as

well as for water.

TABLE 22. VELOCITIES AND VELOCITY-HEADS

V = \/2gA = 8.020 Vh
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ART. 23. FLOW UNDER PRESSURE

The level of water in the reservoir and the orifice of outflow

have been thus far regarded as subjected to no pressure, or at least

only to the pressure of the atmosphere which acts upon both with

the same mean force of 14.7 pounds per square inch, since tin-

head // is rarely or never so great that a sensible variation in at-

mospheric pressure can be detected between the orifice and the

water level. But the upper level of the water may be subject to

the pressure of steam or to the pressure due to a heavy weight or

to a piston. The orifice may also be under a pressure greater or

less than that of the atmosphere. It is required to determine

the velocity of flow from the orifice under these conditions.

First, suppose that the surface of the water in the vessel or

reservoir is subjected to the uniform pressure of p Q pounds per

square unit above the atmospheric pressure, while the pressure

at the orifice is the same as that of the atmosphere. Let h be

the depth of water on the orifice. The velocity of flow V is greater

than -\/2gh on account of the pressure p Q ,
and it is evidently the

same as that from a column of water whose height is such as to

produce the same pressure at the orifice. If w is the weight of

a cubic unit of water, the unit-pressure at the orifice due to the

head is wh, and the total unit-pressure at the depth of the orifice

is p = wh -f- p ,
and from formula (ll)i the head of water which

would produce this total unit-pressure is

w w

Accordingly the theoretic velocity of flow from the orifice is

or, if h denote the head corresponding to the pressure p ,

The general formula (22) t thus applies to any small orifice if //

be the head corresponding to the static pressure at the orifice.

Secondly, suppose that the surface of the water in the vessel

is subjected to the unit-pressure /> ,
while the orifice is under the
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external unit-pressure pL . Let h be the head of actual water on

the orifice, hQ the head of water which will produce the pressure

p Q ,
and hi the head which will produce p lf The theoretic ve-

locity of flow at the orifice is then the same as if the orifice were

under a head h + h hi, or

V =
-\/2g(h + hQ -hi) (23)!

in which the values of hQ and hi are

ho = po/w and hi = pi/w

Usually po and pi are given in pounds per square inch, while

ho and hi are required in feet; then (Art. 11)

ho = 2.304/> hi = 2.304/^1

The values of pQ and pl may be absolute pressures, or merely pres-

sures above the atmosphere. In the latter case pi may sometimes

be negative, as in the discharge of water into a condenser.

. As an illustration of these principles let the cylindrical tank

in Fig. 23 be 2 feet in diameter, and upon the surface of the water

let there be a tightly fitting pis-

ton which with the load W weighs

3000 pounds. At the depth 8 feet

below the water level are three

small orifices : one at A
, upon

which there is an exterior head of

water of 3 feet; one not shown

in the figure, which discharges

directly into the atmosphere ;
and

one at C, where the discharge is

into a vessel in which the air pressure is only 10 pounds per

square inch. It is required to determine the velocity of efflux

from each orifice. The head hQ corresponding to the pressure on

the upper water surface is

h Q
= h. = 2000 = 8 feet
w 3.142X62.5

The head hi is 3 feet for the first orifice, o for the second, and
-

2.304(14.7
-

io)
=

10.83 feet f r the third. The three

theoretic velocities of outflow then are:
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V = 8.02 V8 + 15.28
-

3
=

36.1 feet per second,

V = 8.02 V8+ 15.284- o -
38.7 feet per second,

V = 8.02 V8-f 15.28+ 10.83
= 4-8 feet per second.

In the case of discharge from an orifice under water, as at A
in Fig. 23, the value of h -

7*L is the same wherever the orifice be

placed below the lower level, and hence the velocity depends

upon the difference of level of the two water surfaces, and not

upon the depth of the orifice.

The velocity of flow of oil or mercury under pressure is to be de-

termined in the same manner as water by finding the heads which will

produce the given pressure. Thus in the preceding numerical example,
if the liquid is mercury whose weight per cubic foot is 850 pounds
the head of mercury corresponding to the pressure of the piston is

/7o
= 122o_ =II2feet
3.142X850

and, accordingly, for discharge into the atmosphere at the depth
h = 8 feet the velocity is

V = 8.02VS -h 1. 12 = 24.2 feet per second,

while for water the velocity was 38.7 feet per second. The general

formula (22) i is applicable to all cases of the flow of liquids from

a small orifice if for h its value p/w be substituted where p is the re-

sultant unit-pressure at the depth of the orifice and w the weight of

a cubic unit of the liquid. Thus for any liquid

V = V^pfiv (23) 2

is the theoretic velocity of flow from the orifice. Accordingly for the

same unit-pressure p the velocities are inversely proportional to the

square roots of the densities of the liquids.

Prob. 23. What is the theoretic velocity of flow from a small

orifice in a boiler i foot below the water level when the steam-gage reads

60 pounds per square inch ? What is the theoretic velocity when the

gage reads o ?

ART. 24. INFLUENCE OF VELOCITY OF APPROACH

Thus far in the determination of the theoretic velocity and

discharge from an orifice, the head upon it has been regarded
as constant. But if the cross-section of the vessel is not large,
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the head can only be kept constant by an inflow of water, and this

will modify the previous formulas. In this case the water ap-

proaches the orifice with an initial velocity. Let a be the area of

the orifice and A the area of the horizontal cross-section of the

vessel. Let V be the velocity of flow through
a and v be the vertical velocity of inflow

through A. Let W be the weight of water

flowing from the orifice in one second
;
then

an equal weight must enter at A in one sec-

ond in order to maintain a constant head h.

The kinetic energy of the outflowing water is

W - V2
/2g, and this is equal, if there be no loss of energy, to

the potential energy Wh of the inflowing water plus its kinetic

energy W v~/2g,

or W

Now since the same quantity of water Q passes through the two

areas in one second, Q = aV = Av, whence v *= V a/A. In-

serting this value of v in the equation of energy^ there is found

V=J- (24),
\i (a/A)"

which is always greater than the value ^/2gh.

The influence of the velocity of approach on the velocity of

flow at the orifice can now be ascertained by assigning values to

the ratio a/A. Thus, if a = A, the velocity V must be infinite

in order that the water may fill the entire section of the vessel

and orifice. Further,

for a = f A
for a = | A
for a= \A
for a = \A
for a = Jg- A
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form vertical inflow at the water surface, and 0.5 percent when

a ==
-ft A . Practically, if the area of the orifice be less than one-

twcntieth of the cross-section of the vessel, the error in using the

formula V = VagTJ is too small to be noticed, even in the most

precise experiments, and fortunately most orifices are smaller in

relative size than this.

A more common case is that where the reservoir is of large

horizontal and small vertical cross-section, and where the water

approaches the orifice with velocity in a horizontal direction, as

in Fig. 246. Here let A be the area of the vertical cross-section

of the trough or pipe, a the area of the orifice, and h the head on

its center. Then if h be large compared with the depth of the

Fig. 24b. Fig. 24c.

orifice, exactly the same reasoning applies as before, and the

theoretic velocity at the orifice is given by the above formula (25) i.

The same is also true for the case shown in Fig. 24c, where water

is forced through a hose with the velocity v and issues from a

nozzle with the velocity V, the head h being that due to the pres-

sure at the entrance of the nozzle.

The "effective head" on an orifice is the head that will pro-

duce the theoretic velocity V. If H is this effective head, then

H = V2
/2g, and from the first equation of this article

(24),

The effective head on an orifice is, therefore, the sum of the

pressure and velocity heads which exist behind it. Another

expression for the effective head can be obtained from (24)i, or

n= h

i-(a/A)*
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When H has been found from either of these formulas, the

theoretic velocity and discharge are given by

V = A/2g# and Q = aV = a V'

2gU

for all instances where h is sufficiently large so that its value is

sensibly constant for all parts of the orifice. But if this is not

the case, the value of Q is to be found by the methods of Arts.

47 and 48.

Prob. 24. In Fig. 24c let the head h be 50 feet, the diameter of the nozzle

ii inches, and the diameter of the hose 3 inches. Compute the effective

head H
,
and also the discharge Q in cubic feet per second.

ART. 25. THE PATH OF A JET

When a jet of water issues from a small orifice in the vertical

side of a vessel or reservoir, its direction at first is horizontal, but

the force of gravity immediately causes the jet to move in a curve

which will be shown to be the common parabola. Let x be the

abscissa and y the ordinate of any

point of the curve, measured from the

orifice as an origin, as seen in Fig. 25a.

The effect of the impulse at the orifice

is to cause the space x to be described

uniformly in a certain time /, or, if v be

the velocity of flow, x = vt. The effect

of the force of gravity is to cause the

space y to be described in accordance

with the laws of falling bodies (Art. 21), or y = \g&. Elimi-

nating / from these two equations, and replacing v
2
by its

theoretic value 2gh, gives

Fig. 25a.

which is the equation of a parabola whose axis is vertical and

whose vertex is at the orifice.

The horizontal range of the jet for any given ordinate y is

found from the equation x2 =
$hy. If the height of the vessel

be /, the horizontal range on the plane of the base is
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This value is o when // = o and also when h = /, and it is a maxi-

mum when // = J /. Hence the greatest range is from an oriii< e

at the mid-height of the vessel.

A more general case is that where the side of the vessel i-

inclined to the vertical at the angle 0, as in Fig. 256. Here the

jet at first issues perpendicularly

to the side with a velocity v
y

having the theoretic value ^/2gh,

and under the action of the im-

pulsive force a particle of water

would describe the distance AB
in a certain time / with the uni-

form velocity v. But in that

same time the force of gravity causes it to descend through the

distance BC. Now let x be the horizontal abscissa and y the ver-

tical ordinate of the point C measured from the origin A. Then

AB = x sec0, and BC = x ta.nO - y. Hence

x seed = vt x ta.nO y
=

\ gt~

The elimination of / from these expressions gives, after replac-

ing v
2
by its value 2gh,

y
= x ta.nO - x2 sec2

0/4/z (25)

which is also the equation of a common parabola.

To find the horizontal range in the level of the orifice take

y = o in the last equation ;
then

x = 4h tan0/sec
2 = 2h sin 20

This is o when = o or = 90 ;
it is a maximum and equal

to 2h when = 45. To find the highest point of the jet the

first derivative of y with reference to x is to be equated to zero

in order to obtain the maximum ordinate, and there results

x = h sin 20 y'h sin2

which are the coordinates of the highest point with respect to

the origin A. In these if = 90, # is o and y is //
;
that is, if a

jet be directed vertically upward, it will, theoretically, rise to the

height of the water level in the reservoir.
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As a numerical example let a vessel whose height is 16 feet

stand upon a horizontal plane DE, Fig. 25, the side of the vessel

being inclined to the vertical at the angle & = 30. Let a jet

issue from a small orifice at 4 under a head of 10 feet. The jet

rises to its maximum height, ;y
= ixio =

2.5 feet, at the dis-

tance x = jA/3 X 10 = 8.66 feet from A. At x =
17.32 feet

the jet crosses the horizontal plane through the orifice. To locate

the point where it strikes the plane DE, the value of y is made 6

feet
; then, from the equation of the curve, x is found to be 24.6

feet, whence the distance DE is 21.2 feet.

In practice the above equations are modified by the frictional

resistance of the edges of the orifice which renders v less than the

theoretic value V2 ^, and also by the resistance of the air.

They are, indeed, extreme limits which may be approached but

not reached by equations that take these resistances into account.

Prob. 25. A jet issues from a vessel under a head of 6 feet, one side

of the vessel being inclined to the vertical at an angle of 45 and its depth

being 10 feet. Find the maximum height to which the jet rises, the point

where it strikes the horizontal plane of the base, and its theoretic velocity as

it strikes that plane.

ART. 26. THE ENERGY OF A JET

Let a jet or stream of water have the velocity v, and let W be

the weight of water per second passing any given cross-section.

The kinetic energy of this moving water is the same as that stored

up by a body of weight W falling freely under the action of gravity

through a height h and thereby acquiring the velocity v. Thus,

if K represents kinetic energy per second,

K = Wh = W. v
2
/2g (26)!

Now if a be the area of the cross-section and w the weight of a

cubic unit of water, W is the weight of a prism of water of

length v and cross-section a, or W = wav, whence

K = wav*/2g (
(26) 2

and accordingly the energy which a jet can yield in one second

is directly proportional to its cross-section and to the cube of its

velocity. The term "power" is often used to express energy
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per second, and when K is in foot-pounds per second, the horse-

power that a jet can yield is ascertained by dividing K by 550.

Hence the horse-powers of jets of the same cross-section vary
as the cubes of their velocities. For example, if the velocity of a

jet be doubled, the cross-section remaining the same, the horse-

power is made eight times as great. The term "energy of a

jet
"

is often used in hydraulics for brevity, but it always means

energy per second of the jet ;
that is, the power of the jet.

The expressions just deduced give the theoretic energy of the

jet, that is, the maximum work which can be obtained from it in

one second, but this, in practice, can never be fully utilized. The
actual work realized when a jet strikes a moving surface, like the

vane of a water-motor, depends upon a number of circumstances

which will be explained in a later chapter, and it is the constant

aim of inventors so to arrange the conditions that the work real-

ized may be as near the theoretic energy as possible. The "effi-

ciency" of an apparatus for utilizing the power of moving water

is the ratio of the work k actually utilized to the theoretic energy,

or the efficiency e is

e=R/K (.^0)3

The greatest possible value of e is unity, but this can never be

attained, owing to the imperfections of the apparatus and the

frictional resistances. Values greater than 0.90 have, however,

been obtained
;
that is, 90 percent or more of the theoretic power

of the water has been utilized in some of the best forms of hy-

draulic motors.

For example, let water issue from a pipe 2 inches in diameter

with a velocity of 10 feet per second. The cross-section in square

feet is 3.142/144, and the kinetic energy of the jet in foot-pounds

per second is

K 0.01555 X 62.5 X 0.0218 X io3 = 21.2

which is 0.0385 horse-power. If the velocity is 100 feet per sec-

ond, the theoretic horse-power will be 38.5; if this jet operates

a motor yielding 27.7 effective horse-powers, tlie efficiency of the

apparatus is 27.7/38.5 =
0.72, or 72 percent of the theoretic

energy is utilized.
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The energy of a jet is the same whether its direction of motion

be vertical, horizontal, or inclined, and per second it is always Wh,
where h is the velocity-head corresponding to actual velocity v,

and W is the weight of water delivered per second. The energy
should not be computed from the theoretical velocity F, as this

is usually greater than the actual velocity.

Prob. 26. When water issues from a pipe with a velocity of 3 feet per

second, its kinetic energy is sufficient to generate 1.3 horse-powers. What is

the horse-power when the velocity becomes 6 feet per second ?

ART. 27. IMPULSE AND REACTION OF A JET

When a stream or jet is in motion, delivering W pounds of

water per second with the uniform velocity v, that motion may
be regarded as produced by a constant force F, which has acted

upon W for one second and then ceased. In this second the

velocity of W has increased from o to v, and the space \ v has been

described. Consequently the work F X \v has been imparted to

the water by the force F. But the kinetic energy of the moving
water is W v

2
/2g, and hence by the law of conservation of energy

F X i v = W X v
2
/2g, from which the constant force is

This value of F is called the
"
impulse" of the jet. As W is in

pounds per second, v in feet per second, and g in feet per second

per second, the value of F is in pounds.

In theoretical mechanics, the term "impulse" is used in a

slightly different sense, namely, as force multiplied by time.

In hydraulics, however, W is not pounds, but pounds per second,

and thus the impulse is simply pounds. The force F is to be re-

garded as a continuous impulsive pressure acting at the origin

of the jet in the direction of the motion. For, by the definition,

F acts for one second upon the W pounds of water which pass a

given section
;
but in the next second W pounds also pass, and

the same is the case for each second following. This impulse
will be exerted as a pressure upon any surface which is placed in

the path of the jet.
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The reaction of a jet upon a vessel occurs when \vukr flows

from an orifice. This reaction must be equal in value and oppo-
site in direction to the impulse, as in all cases of stress action

and reaction are equal. In the direction of the jet the impulse

produces motion, in the opposite direction it produces an equal

pressure which tends to move the vessel backward. The force

of reaction of a jet is hence equal to the impulse but opposite in

direction. For example (Fig. 27), let a vessel

containing water be suspended at A so that

it can swing freely, and let an orifice be

opened in its side at B. The head of water at

B causes a pressure which acts toward the left

and causes W pounds of water to move during

every second with the velocity of v feet per

second, and which also acts toward the right and causes the

vessel to swing out of the vertical; the first of these forces is

the impulse, and the second is the reaction of the jet. If a force

R be applied on the right of a vessel so as to*prevent the swing-

ing, its value is R-p-W- 9/g (27),

and this is the formula for the reaction of the jet.

The impulse or reaction of a jet issuing from an orifice is

double the hydrostatic pressure on the area of the orifice. Let

// be the head of water, a the area of the orifice, and w the weight

of a cubic unit of water
; then, by Art. 15, the normal pressure

when the orifice is closed is wah. When the orifice is opened, the

weight of water issuing per second is W = wav, and hence the

impulse or reaction of the jet is

R = F = wav v/g
= 2wa - v

2
/2g

= 2wah

which is double the hydrostatic pressure. This theoretic con-

clusion has been verified by many experiments (Art. 144).

When a jet impinges normally on a plane, it produces a dynamic-

pressure on that plane equal to the impulse F, since the force re-

quired to stop W pounds of water in one second is the same as

that required to put it in motion. Again, if a stream moving

with the velocity v is retarded so that its velocity becomes flj,
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the impulse in the first instant is W z^/g, and in the second

W v2/g. The difference of these, or

Fi-Ft-Wfa-vJ/g (27) 8

is a measure of the dynamic pressure which has been developed.

It is by virtue of the pressure due to change of velocity that tur-

bine wheels and other hydraulic motors transform the kinetic

energy of moving water into useful work.

Prob. 27. If a stream of water 3 inches in diameter issues from an orifice

in a direction inclined downward 26 to the horizon with a velocity of 15

feet per second, find its horizontal reaction on the vessel.

ART. 28. ABSOLUTE AND RELATIVE VELOCITIES

Absolute velocity is defined in this book as that with respect

to the surface of the earth, and relative velocity as that with

respect to a body moving on the earth. Thus absolute velocity

is that seen by a spectator who is on the earth, and relative veloc-

ity is that seen by one who is on the moving body. For instance,

if a body is dropped by a person who is on a moving railroad car,

it appears to a person standing outside to move obliquely, but to

one on the car it appears to move vertically. On a car in uni-

form motion all the laws of mechanics prevail exactly as if it were

at rest
;
hence if a body of weight W is dropped through a height

//, it acquires a theoretic vertical velocity of ~\/2gh with respect to

the car. But if the horizontal velocity of the car is u, the kinetic

energy of the body at the moment of letting it fall is W u2
/2g

and its potential energy is Wh, so that, neglecting frictional re-

sistances, its total energy after falling through the height h is the

sum of these, and accordingly its absolute velocity with respect

to the earth is ^/2gh + u2
.

When a vessel containing water with a free surface, as in Fig.

280, has an orifice under the head h and is in motion in a straight

line with the uniform absolute velocity u, the theoretic velocity

of flow relative to the vessel is V = ^/2gh, or the same as its

absolute velocity if the vessel were at rest, for no accelerating

forces exist to change the direction or the value of g. The abso-
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lute velocity of flow, however, may be greater or less than K,

depending upon the value of u and its direction. To illustrate,

take the case of a vessel in

uniform horizontal motion from

which water is flowing through
three orifices. At A the direc-

tion of V is horizontal, and as

the vessel is moving in the op-

posite direction with the velocity

n, the absolute velocity of the water as it leaves the orifice is

i' = I' M. It is also plain, if the orifice is in front of the vessel

and the direction of V is horizontal, that the absolute velocity of

the water as it leaves the orifice is v = V + u.

Again, at B is an orifice from which the water issues vertically

with respect to the vessel with the relative velocity F, while at

the same time the orifice moves horizontally with the absolute

velocity u. Forming the parallelogram, the absolute velocity v

is seen to be the resultant of the velocities V and u, or

Lastly, at C is shown an orifice in the front of the vessel so ar-

ranged that the direction of the relative velocity V makes an

angle < with the horizontal. From C draw Cu to represent

the velocity u, and CV to represent 7, and complete the paral-

lelogram as shown; then Cv, the resultant of u and F, is the

absolute velocity with which the water leaves the orifice. From

the triangle Cuv

v = vV2+ w2 +2Fcos< (28)

In this, if < =
o, the absolute velocity v becomes V + u, as before

shown for an orifice in the front
;

if <t>
= 90, it becomes the same

as when the water issues vertically from the orifice in the base
;

and if <t>
= 180, the value of v is V u as before found for an

orifice in the rear end.

Another case is that of a revolving vessel having an opening
from which the water issues horizontally with the relative velocity

T. while the orifice is moving horizontally with the absolute
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velocity u. Fig. 2Sb shows this case, ft being the angle which V
makes with the reverse direction of u, and here also

is the absolute velocity of the water as it leaves the vessel. In

all cases the absolute velocity of a body leaving a moving surface

is the diagonal of a parallelogram, one side

of which is the velocity of the body relative

to the surface and the other side is the

absolute velocity of that surface.

When a vessel moves with a motion

which is accelerated or retarded, this

Fig 28b
affects the value of g, and the reasoning

of the preceding articles does not give the

correct value of V. For instance, when a vessel moves verti-

cally upward with an acceleration /, the relative velocity of

flow from an orifice in it is V \/2(g +/)/?, and if u be the

velocity of the vessel at any instant, the absolute downward

velocity of flow is V u. Again, when it moves downward

with the acceleration /, the relative velocity of flow is

V = V2(g /) h and the absolute is V + u. If the downward

acceleration is g, the vessel is freely falling and V will be zero,

since both vessel and water are alike accelerated and there is

then no pressure on the base.

Prob. 28. In Fig. 28a let the orifice at A be under a head of 5.5 feet

and its height above the earth be 7.5 feet, while the car moves with a

velocity of 40 miles per hour. Compute the relative velocity F, the

absolute velocity v, and the absolute velocity of the jet as it strikes

the earth.

ART. 29. FLOW FROM A REVOLVING VESSEL

Water in a vessel at rest on the surface of the earth is acted

upon only by the vertical force of gravity, and hence its surface

is a horizontal plane. Water in a revolving vessel is acted upon

by centrifugal force as well as by gravity, and it is observed that

its surface assumes a curved shape. The simplest case is that of

a cylindrical vessel rotating with uniform velocity about its
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vertical axis, and it will be shown that here the water sui

is that of a paraboloid.

Let BC be the vertical axis of the vessel, // the depth of watt r

in it when at rest, and h
v and h^ the least and greatest depth- >i

water in it when in motion. Let G be any point on the sur:

of the water at the horizontal distance x
from the axis, and let y be the vertical

distance of G above the lowest point C.

The head of water on any point E in the

base is EG or hi + y. Now this head y
is caused by the velocity u with which

the point G revolves around the axis, or, in other words, the

position of G above C is due to the energy of rotation. Thus if

I! is the weight of a particle of water at G, the potential energy

Wy equals the kinetic energy Wu2
/2g, and hence y = u2

/2g.

Let n be the number of revolutions made by the vessel and

water in one second. Then u = 27rx w, and hence

y = u2g
which is the equation of a common parabola with respect to rec-

tangular axes having an origin at its vertex C. The surface of

revolution is hence a paraboloid.

Since the volume of a paraboloid is one-half that of its circum-

scribing cylinder, and since the same quantity of water is in the

vessel when in motion as when at rest, it is plain that in the

figure \Qh hi) equals h h^ Consequently h h\ equals

^2 h, or the elevation of the water surface at D above its original

level is equal to its depression at C. If r be the radius of the ves-

sel, the height lh //! is, from the above equation, 2 -n-
2w2r2/^, and

hence the distances h - h
v
and Ju h are each equal to TrVrYg-

The head at the middle of the base of the vessel during the motion

is now ^ = h - 7rVr2
/g and the head at any point E is hi + y =

h + (2*
2 - rW/g.

The theoretic velocity of flow from the small orifice in the

base is that due to the head hi -f y, or
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which is less than ^/2gh when #2
is less than \r

1
,
and greater

when x2
is greater than \ri

. For example, let r = i foot and

h =
3 feet, then V =

13.9 feet per second when the vessel is at

rest. But if it is rotating three times per second around its axis

with uniform speed, the velocity from an orifice in the center of

the base, where x =
o, is 3.9 feet per second, while the velocity

from an orifice at the circumference of the base, where x = i foot,

is 19.2 feet per second. At this speed the water is depressed 2.76

feet below its original level at the center and elevated the same

amount above that level around the sides of the vessel.

In the case of a closed vessel where the paraboloid cannot form,

the velocity of flow from all orifices, except one at the axis, is

increased by the rotation. Thus in Fig. 29b, if

the vessel is at rest and the head on the base is h,

the velocity of flow from all small orifices in the

B ~E base is ^/2gh. But if the vessel is revolved about
Fig. 296. the verticai axis # so tnat an orifice at E has the

velocity u around that axis, then the pressure-head at E is

h + u2
/2g, and accordingly

(29)

is the theoretic velocity of flow from an orifice at E. This formula

is an important one in the discussion of hydraulic motors. Here,
as before, the value of u may be expressed as 2irxn, when x is

the distance of E from the axis and n is the number of revolutions

per second. As an example, let a closed vessel full of water be

revolved about an axis 120 times per minute, and let it be re-

quired to find the theoretic velocity of flow from an orifice i\

feet from the axis, the head on which is 4 feet when the vessel is at

rest. The velocity u is found to be 18.85 ^eet Per second, and

then the theoretic velocity of flow from the orifice is 24.8 feet per

second, whereas it is only 16 feet per second when the vessel

is at rest.

The velocity V in both these cases is a relative velocity, for the

pressure at the moving orifice produces a velocity with respect to

the vessel. The absolute velocity, or that with respect to the

earth, is greater than the relative velocity when the stream issues
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from an orifice in the base, for the oritice moves horizontally with

the absolute velocity // and the stream moves downward with tin-

relative velocity V, and hence the absolute velocity of the stn

is \/K2 + u*. When the stream issues from an orifice in the side

of the vessel U{x>n which the head is //, formula (29) tfivr- it. rela-

tive velocity, and then the absolute velocity is found by (28).

I 'rob. 29. A cylindrical vessel 2 feet in diameter and 3 feet deep is three -

fourths full of water, and is revolved about its vertical axis so that the water

is just on the point of overflowing around the upper edge. Find the number

of revolutions per minute. Find the relative velocity of flow from an oritice

in the base at a distance of 0.75 foot from the axis. Show that the velocity

from all orifices within 0.707 foot of the axis is less than if the vessel were

at rest.

ART. 30. THEORETIC DISCHARGE

The term "
discharge" means the volume of water flowing

in one second from a pipe or orifice, and the letter Q will designate

the theoretic discharge ;
that is, the discharge as computed with-

out considering the losses due to frictional resistances. When
all the filaments of water issue from the pipe or orifice with the

same velocity, the quantity of water issuing in one second is

equal to the volume of a prism having a base equal to the cross-

section of the stream and a length equal to the velocity. If

this area is a and the theoretic velocity is V, then Q = aV is

the theoretic discharge. Taking a in square feet and V in feet

per second, the discharge Q is in cubic feet per second.

For a small orifice on which the head // has the same value

for all parts of the opening, the theoretic discharge is

Q = aV = aV2gh (30)

and in Eriglish measures Q = 8.020, \fh. For example, let a

circular orifice 3 inches in diameter be under a head of 10.5 feet,

and let it be required to compute Q. Here 3 inches = 0.25 foot

and from Table F the area of the circle is 0.04909 square foot.

From Art. 22 Ihe theoretic velocity F is 8.02 X Vio-5 = 25.99

feet per second. Accordingly the theoretic discharge is 0.04909

X 25.99 = T - 28 cubic feet per second.
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The above formula for Q applies strictly only to horizontal

orifices upon which the head h is constant, but it will be seen

later that its error for vertical orifices is less than one-half of one

percent when h is greater than double the depth of the orifice.

Horizontal orifices are but little used, as it is more convenient

in practice to arrange an opening in the side of a vessel than in

its base. In applying the above formula to a vertical orifice, h is

taken as the vertical distance from its center to the free-water

surface. Vertical orifices where the head h is small are discussed

in Arts. 47 and 48.

Since the theoretic velocity is always greater than the actual

velocity, the theoretic discharge is a limit which can never be

reached under actual conditions. Theoretically the discharge

is independent of the shape of the orifice, so that a square orifice

of area a gives the same theoretic discharge as a circular orifice

of area a
;

it will be seen in Chap. 5 that this is not quite true for

the actual discharge.

In this chapter it is supposed that the velocity of a jet is the

same in all parts of the cross-section, as this would be the case if

h has the same value throughout the section were it not for the

retarding influence of friction. Actually, however, the filaments

of water near the edges of the orifice move slower than those

near the center. If q be the actual discharge from any orifice and

v the mean velocity in the area a, then q av, or the equation
v = q/a may be regarded as a definition of the term "mean

velocity." The theoretic mean velocity is 2 Vg/*, but the actual

mean velocity is slightly smaller, as will be seen in Chap. 5.

Formula (30) may be used for computing h when Q and a

are given, and it shows that the theoretic head required to de-

liver a given discharge varies inversely as the square of the area

of the orifice.

Prob. 30a. Compute the theoretic head required to deliver 300

gallons of water per minute through an orifice 3 inches in diameter.

Prob. 306. A vessel one foot square has a small orifice in the base.

What is the theoretic velocity of flow from this orifice when the vessel con-

tains 125 pounds of mercury? Also when it contains 250 pounds of water?
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ART. 31. STEADY FLOW IN SMOOTH PIPES

When water flows through a pipe of varying cross-section

and all sections are filled with water, the same quantity of water

passes each section in one second. This is called the case of steady
flow. Let q be this quantity of water and let i, %, % be the mean
velocities in three sections whose areas are a\, (h, aa. Then

q
= aw =

atf>2
= a3z>3 (31)i

This is called the condition for steady flow or the equation of

continuity, and it shows that the velocities at different sections

vary inversely as the areas of those sections. If v be the velocity

at the end of the pipe where the area is a, then also q = av.

When the discharge q and the areas of the cross-sections have

been measured, the mean velocities may be computed.

When a pipe is filled with water at rest, the pressure at any

point depends only upon the head of water above that point.

But when the water is in motion, it is a fact of observation that

the pressure becomes less than that due to the head. The unit-

pressure in any case may be measured by the height of a column

of water. Thus if water be

at rest in the case shown in

Fig. 31 a, and small tubes be

inserted at the sections whose

areas are a { and 0%, the water

will rise in each tube to the

same level as that of the water

surface in the reservoir, and

the
t pressures in the sections

will be those due to the hydrostatic heads HI and #2 . But if

the valve at the right be opened, the water levels in the small

tubes will sink and the mean pressures in the two sections will be

those due to the pressure-heads hi and //2 .

Let W be the weight of water flowing in each second through
each section of the pipe, and let v\ and % be the mean velocity

in the section a\ and 2 . When this water was at rest, the poten-

tial energy of pressure in the section a\ was WH\ ;
when it is in

Fig. 3 la.
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motion, the energy in the section is the pressure energy Wh\ plus

the kinetic energy W Vi
2
/2g. If no losses of energy due to fric-

tion or impact have occurred, the energy in the two cases must be

equal. The same reasoning applies to the section a2 ,
and hence

#i =
i + and #2

2g

These equations exhibit the law of steady flow first deduced by
Daniel Bernouilli in 1738, and hence often called Bernoulli's

theorem
;

it may be stated in words as follows :

At any section of a tube or pipe, under steady flow without

friction, the pressure-head plus the velocity-head is equal to

the hydrostatic head that obtains when there is no flow.

This theorem of theoretical hydraulics is of great importance in

practice, although it has been deduced for mean velocities and

mean pressure-heads, while actually the velocity and the pressure

are not the same for all points of the cross-section.

The pressure-head at any section hence decreases when the

velocity of the water increases. To illustrate, let the depths

of the centers of a L and #2 be 6 and 8 feet below the water level,

and let their areas be 1.2 and 2.4 square feet. Let the discharge

of the pipe be 14.4 cubic feet per second. Then from (31 )i the

mean velocity in #1 is i\ = 14.4/1.2 = 12 feet per second, which

corresponds to a velocity head of 0.01555^ = 2.24 feet, and

consequently from (31 )2 the pressure-head in a^ is 6.0 2.24 =

3.76 feet. For the section a2 the velocity is 6 feet per second and

the velocity head is 0.56 feet, so that the pressure-head there is

8.0 0.56 =
7.44 feet.

The theorem of (31 ) 2 may be also applied to the jet issuing

from the end of the pipe. Outside the pipe there can be no pres-

sure, and if h be the hydrostatic head and V the velocity, the

equation gives h = F2
/2g, or V = V2g/?; that is, if frictional

resistances be not considered, the theoretic velocity of flow from

the end of a pipe is that due to the hydrostatic head upon it. In

Chap. 8 it will be seen that the actual velocity is much smaller
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than this, for a large part of the head h is expended in over-

coming friction in the pipe.

A negative pressure may occur if the velocity- head In-comcs

greater than the hydrostatic head, for (31)2 shows that //, is

negative when vf/ig exceeds H^ A case of this kind i- ^ivm
in Fig. 316, where the section at A is so small that the \rl<n itv

is greater than that due to the head //,.

so that if a tube be inserted at A, no water

runs out
;
but if the tube be carried down-

ward into a vessel of water, there will be

lifted a column CD whose height is that

of the negative pressure-head h\. For ex-

ample, let the cross-section of A be 0.4

square feet, and its head h be 4.1 feet, while 8 cubic i--t

per second are discharged from the orifice below. Then the

velocity at A is 20 feet per second, and the corresponding ve-

locity-head is 6.22 feet. The pressure head at A then is, from

the theorem of formula (31 )2 ,

hi
=

4.1 6.22 = 2.12 feet

and accordingly there exists at A an inward pressure

pi
= 2.12 X 0.434

=
0.92 pounds per square inch

This negative pressure will sustain a column of water CD whosr

height is 2.12 feet. When the small vessel is placed so that its

water level is less than 2.12 feet below A, water will be constantly

drawn from the smaller to the larger vessel. This is the principle

of the action of the injector-pump.

Prob. 31. In a horizontal tube there are two sections of diameters i.o

and 1.5 feet. The velocity in the first section is 6.32 feet per second, and

the pressure-head is 21.57 feet . Find the pressure-head for the second sec-

tion if no energy is lost between the sections.

ART. 32. EMPTYING A VESSEL

Let the depth of water in a vessel be H
;

it is required to de-

termine the theoretic time of emptying it through an orifice in

the base whose area is a. Let Y be the area of the water surface
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when the depth of water is y ;
let St be the time during which

the water level falls the distance By. During this time the quan-

tity of water Y By passes through the orifice. But the dis-

charge in one second under the constant head y is Vagy, and

hence the discharge in the time St is aSt ^/2gy. Equating these

two expressions, there is found the general formula

which gives the time for the water surface to drop

the distance By, v *

St=J^=
aV2gy

The time of emptying any vessel is now deter-

mined by inserting for Y its value in terms of y, and then in-

tegrating between the limits H and o.

For a cylinder or prism the cross-section Y has the constant

value A, and the formula becomes

B

the integration of which, between limits H and h, gives

aV2g
as the theoretic time for the head H to fall to h. If h =

o, this

formula gives the time of emptying the vessel. If the head were

maintained constant, the uniform discharge per second would

be a ^/2gH, and the time of discharging a quantity equal to the

capacity of the vessel is AH divided by a ~\/2gH, which is one-

half of the time required to empty it.

To find the time of emptying a hemispherical bowl of radius

r through a small orifice at its lowest point, let x be the radius

of the cross-section Y
;

then x2
-f- (r y)

2 = r
2

is the equation

of the circle, from which the area Y is ir(2ry y
2
). Then

aV2g
and by integration between the limits r and 6

/ = i4?rrV I 5 V^
which is the theoretic time required to empty the bowl.
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The most important application of these principles is in the

case of the right prism or cylinder, and here the formula for the

time is modified in practice by introducing a coefficient, as may
be seen in Art. 58. The theoretic time found by the above for-

mula is always too small, since frictional resistances have not been

considered. Moreover, the formula does not strictly apply when
tlu- head is very small, owing to a whirling motion that occurs and

which tends to increase the theoretic time.

Venturi, in 1798, first described the phenomena of this whirl.*

When the head becomes less than about three diameters of the orifice,

the water is observed in whirling motion, the velocity being greatest

near the vertical axis through the center of the orifice, and as the head

decreases a funnel is formed through the middle of the issuing stream.

The direction of this whirl, as seen from above, may be either clock-

wise or contraclockwise, depending on initial motions in the water

or on irregularities in the vessel or orifice, but under ideal conditions

it should be clockwise in the southern hemisphere of the earth and con-

traclockwise in the northern hemisphere, this being the effect of

the earth's rotation. Fig. 326 repre-

sents a vertical section of this funnel,

on which A is any point having the

coordinates x and y with respect to

the rectangular axes OX and OF. The
axis OF is drawn through the center of

the orifice, and OX is tangent to the

level water surface at a distance H
above the bottom of the vessel. Let r

be the radius of the funnel in the plane of the orifice. It is required

to find the relation between x, y, H, and r, or the equation of the

curve shown in the figure.

An approximate solution may be made by supposing that the par-

ticle of water at A is moving nearly horizontally around the a\i>

OF with the velocity v; this velocity must be due to the head v.

\\hcnce & = 2gy. This particle is acted upon by the downward force

AB, due to gravity, and by the horizontal force AC, due to centrif-

ugal action, and they are proportional to g and &/x, these being the

Fig. 326.

*
Tredgold 's Tracts on Hydraulics (London, 1709 and 1826} gives a

translation of the memoir of Venturi.
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accelerations due to gravity and centrifugal force. The ratio AC/AB
is the tangent of the angle 6 which the water surface at A makes with

the axis OX, for this surface must be normal to the resultant AD of the

two forces AB and AC. When the ordinate y is increased to y+ 8y,

the abscissa x is decreased to x 8#, and hence the value of tan#

must be the same as &y/Sx. Accordingly

AB gx x ox

and the integration of this differential equation gives y = C/x
z

,
in

which C is the constant of integration. When y equals H, the value

of x is r, and hence C = Hrz
,
and thus

y = Hrz
/x

z
(32) 2

is the equation of the curve, which may be called a quadratic hyper-

bola, the surface of the funnel being then a quadratic hyperboloid.

This equation represents the curve at one instant only, for H contin-

ually decreases as the water flows out, since the direction of v is not

quite horizontal as. the investigation assumes. The general phenom-
ena are, however, well explained by this discussion.

Prob. 32. A prismatic vessel has a cross-section of 18 square feet and

an orifice in its base has an area of 0.18 square foot. Find the theoretic

time for the water level to drop 7 feet, when the head upon the orifice at the

beginning is 16 feet.

ART. 33. COMPUTATIONS IN METRIC MEASURES

(Art. 22) Using for the acceleration of the mean value 9.80

meters per second per second, formulas (22) 2 become

V =
4.427 Vh h = 0.0510272 (33)

in which h is in meters and V in meters per second. Table 33 shows

values of the velocity for given heads, and values of the velocity-head

for given velocities.

(Art. 23) For Fig. 23 let the reservoir be one meter in diameter,

the load W be 2000 kilograms, and the orifices be 3 meters below the

piston. Let the exterior head on A be 1.5 meters, the orifice B be

open to the atmosphere, and the orifice C be in air whose pressure is

0.7 kilograms per square centimeter. The area of the piston is 0.7854
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TABLE 33. VELOCITIES AND VELOCITY-HEADS

Metric Measures

K-V/
*'-4.4J7\/*
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(Art. 26) As an illustration of (26)2 let water issue from a pipe
6 centimeters in diameter with a velocity of 4 meters per second. The
cross-section is found from Table F to be 0.002827 square meters,

and then the theoretic work in kilogram-meters per second is

K =
0.05102 X 1000 X 0.002827 X 4

3 =
9.23

which is 0.123 metric horse-power. If the velocity is 16 meters

per second, the stream will furnish 7.87 horse-powers.

(Art. 30) The area a is in square meters, the velocity V in meters

per second, and the discharge Q in cubic meters per second. Thus
if a pipe 20 centimeters in diameter discharges o. 1 5 cubic meters per

second, the area of the cross-section is 0.03142 square meters and the

mean velocity is 0.15/0.03142 = 4.77 meters per second.

(Art. 31) In Fig. 310, suppose the sections a^ and a? to be 0.06

and 0.12 square meters, and the depths of their centers below the

water level of the reservoir to be 4.5 and 5.5 meters. Let 0.24 cubic

meters per second be discharged from the pipe, then from (31)i

the mean velocities in a^ and a% are 4.0 and 2.0 meters per second.

The velocity-heads are then 0.82 meters for a\ and 0.20 meters for 0%,

so that during the flow the pressure-head at A is 4.5 0.82 = 3.68

meters and that at B is 5.5 0.20 = 5.30 meters.

Prob. 33a. What theoretic velocities are produced by heads of o.i,

o.oi, and o.ooi meter? What is the velocity-head of a jet, 7.5 centimeters

in diameter, which discharges 500 liters per second ?

Prob. 336. A prismatic vessel has a cross-section of 1.5 square meters

and an orifice in its base has an area of 150 square centimeters. Compute
the theoretic time for the water level to drop 3 meters when the head at the

beginning is 4 meters.

Prob. 33c. A small turbine wheel using 3 cubic meters of water per

minute under a head of 10^ meters is found to deliver 5.1 metric horse-

powers. Compute the efficiency of the wheel.

Prob. 33d. In an inclined tube there are two sections of diameters 10

and 20 centimeters, the second section being 1.536 meters higher than the

first. The velocity in the first section is 6 meters per second and the pres-

sure-head is 7.045 meters. Find the pressure-head for the second section,
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CHAPTER 4

INSTRUMENTS AND OBSERVATIONS

ART. 34. GENERAL CONSIDERATIONS

Some of the most important practical problems of Hydraulics
are those involving the measurement of the amount of water dis-

charged in one second from an orifice, pipe, or conduit under given
conditions. The theoretic formulas of the last chapter furnish

the basis of most of these methods, and in the chapters following
this one are given coefficients derived from experience which

enable those formulas to be applied to practical conditions.

These coefficients have been determined by measuring heads,

pressures, or velocities with certain instruments, and also the

amount of water actually discharged, and then comparing the

theoretic results with the actual ones. It is the main object of

this chapter to describe the instruments used for this purpose, and

a few remarks concerning advantageous methods for the discus-

sion of the observations will also be made.

The engineer's steel tape, level, and transit are indispensable

tools in many practical hydraulic problems. For example, two

reservoirs M and N, connected by a pipe line, may be several

miles apart. To ascertain the difference in elevation of their

water surfaces lines of levels may
be run and bench marks established

near each reservoir, as also at other

points along the pipe line. From
the bench marks at the reservoirs

there can be set up simple board

gages, so that simultaneous read-

ings can be taken at any time to find the difference in eleva-

tion. From the bench marks along the pipe line a profile of the

same can be plotted for use in the discussion. With the transit



76 Chap. 4. Instruments and Observations

and tape the alignment of the pipe line and the lengths of its

curves and tangents can also be taken and mapped. All of

these records, in fact, are necessary in order to determine the

amount of water delivered through the pipe.

For work on a smaller scale, like that of the discharge from

an orifice in a tank, the steel tape may be used to mark points

from which a glass gage tube may be set and

upon which the height of the water surface

above the orifice can be read at any time during

the experiment. Another method is to have a

float on the water surface, the vertical motion

of which is communicated to a cord passing over

a pulley, so that readings can be taken on a scale

as the weight at the lower end of the cord

moves up or down. When the head is very small, however,

these methods are not sufficiently precise, and the hook gage

described in Art. 35 must be used.

It is often desirable for many purposes to keep a continuous

record of the level of a water surface. This can be accom-

Fig. 346.

plished by the use of an automatic re-

cording gage such as that shown in

Fig. 34t\ This apparatus, as made by

Freiz, consists essentially of a float con-

nected to a flat perforated copper band

-which passes over a sprocket wheel and
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which carries at its other end a counterweight. The spr<><

whirl is directly connected to a drum the circumference of which

is exactly one foot and on which a sheet of ruled paper can be

damped. A clockwork moves a pen at a constant and uniform

rate in a direction parallel to the axis of the cylinder, and if the

latter remains stationary, the pen will draw a straight line on

the paper. If, however, the cylinder is caused to revolve by the

rising or falling of the float, the pen will draw a curve, and each

revolution of the cylinder will represent a change of one foot in

the water level. Each sheet or chart, depending on the gear

of the clock, will give a record either 24 hours or 7 days long

before a new chart must be put on by an attendant. By the

interposition of suitable gears between the sprocket wheel and

the cylinder the ratio of the number of revolutions between

the sprocket and the drum can be fixed at any desired number.

With all forms of apparatus of this kind it is desirable that the

float should be of large horizontal diameter in order that its lift-

ing power may be sufficient to overcome the friction in the bear-

ings of the machine and so cause it to easily and quickly

respond to small fluctuations in the water surface.

The Bristol recording water level gage operates on the principle

of the aneroid barometer. A bronze cylindrical box encloses air, the

pressure of which is communicated through a flexible tube to the re-

cording apparatus whenever that pressure exceeds the exterior atmos-

pheric pressure. When this box is placed under water, the head of

water acts on a diaphragm and increases the air pressure an amount

proportional to the head on the diaphragm. In the recording ap-

paratus is a pen which draws a curve on a sheet of paper moved by

clockwork and thus gives a continuous record of the water level.

This apparatus has been used for recording the heights of tides and

of water levels in reservoirs. Of course the adjustment of the

instrument must be made by experiment, its record being compared

by one made by direct methods. The closest reliable reading of

a p;age of this kind appears to be about one-eighth of an inch.

A small quantity of water flowing from an orifice may be

measured by allowing it to run into a barrel set upon a platform

weighing scale. The weight of water discharged in a given time
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is thus ascertained, the time being noted by a stop-watch, and

the volume is then computed by the help of Table 3. If the flow

is uniform, the discharge in one second is then found by dividing

the volume by the number of seconds. A larger quantity of

water may be measured in a rectangular tank, the cross-section

of which is accurately known
;
here the water surface is noted at

the beginning and end of the experiment, and the volume is then

computed by multiplying the area by the differences of the two

elevations. For example, a square tank was 4 feet 2 inches in-

side dimensions, and the gage read 3.17 feet at the beginning and

4.62 feet at the end of the experiment, which lasted 304 sec-

onds
;
then the flow, if uniform, was 0.0828 cubic feet per second.

Larger quantities of water still are sometimes measured in

the reservoir of a city supply. The engineer, by the use of his

level, transit, and tape, makes a precise contour map of the

reservoir, determines with the planimeter the area enclosed by
each contour curve, and com-

putes the volume included

between successive contour

planes. For instance, if the

area of the contour curve AB
is 84320 square feet and that

of CD is 79 624 square feet and

the vertical distance between

the contour planes is 5 feet,

the volume included is 409 860

cubic feet by the method of

mean areas. A more precise determination, however, may be

made by measuring the area of a contour curve halfway between

AB and AC
;

if this is found to be 82 150 square feet, the volume

included between AB and AC is computed by the prismoidal
formula and found to be 410 450 cubic feet.

These direct methods of water measurement form the basis of

all hydraulic practice. In this manner water meters are rated, and

the coefficients determined by which practical formulas for flow through

orifices, weirs, and pipes are established. These coefficients being

known, indirect methods may be used for water measurement; namely,

Fig. 34d.
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the discharge can be computed from the formulas after area and heads

have been ascertained. There are also methods of indirect meu>urc-

ment from observed velocities which will be described later, and which

are especially valuable in finding the discharge of conduits and strc.

Prob. 34. Water flows from an orifice uniformly for 89.3 seconds and falls

into a barrel on a platform weighing scale. The weight of the empty barrel

is 27 pounds and that of the barrel and water is 276 pounds. What is the

discharge of the orifice in gallons per minute, when the temperature of the

water is 62 Fahrenheit ?

ART. 35. THE HOOK GAGE

The hook gage, invented by Boyden about 1840, consists of

a graduated metallic rod sliding vertically in fixed supports, upon
which is a vernier by which readings can be taken to

thousandths of a foot. At the lower end of the rod is

a sharp-pointed hook, which is raised or lowered until .^
its point is at the water level. Fig. 35a represents

the form of hook gage made by Gurley, the gradua-

tion on the rod being to feet and hundredths. The

graduation has a length of 2.2 feet, so that variations in

the water level of less than this amount can be meas-

ured, by using the vernier, to thousandths of a foot. To
take a reading on a water surface, the point of the hook

is lowered below the surface and then slowly raised by
the screw at the top of the instrument. Just before

the point of the hook pierces the skin of the water

(Art. 2) a pimple or protuberance is seen to rise above

it; the hook is then depressed until the pimple is

barely visible and the vernier is read. The most pre-

cise hook gages read to ten-thousandths of a foot, and it

has been stated that an experienced observer can, in a

favorable light and on a water surface perfectly quiet,

detect differences of level as small as 0.0002 feet.

A cheaper form of hook gage, and one sufficiently pre-

cise for many classes of work, can be made by screwing a

hook into the foot of an engineer's leveling rod. The back part of

the rod is then held in a vertical position by two clamps on fixed



80 Chap. 4. Instruments and Observations

supports, while the front part is free to slide. It is easy to arrange

a slow-motion movement so that the point of the hook may be

precisely placed at the water level. The reading of the vernier is

determined when the point of the hook is at a known elevation

above an orifice or the crest of a weir, and by subtracting from this

the subsequent readings the heads of water are known. A New
York leveling rod, reading to thousandths of a foot on its vernier,

is to be preferred for this work.

Hook gages are principally used for determining the eleva-

tions of the water surface above the crest of a weir, as the heads

of water are small and must be known with precision. In Fig.

356, the crest of the weir is seen and the hook gage is erected at

some distance back from it, where the

water surface is level. In this case great

care should be taken to determine the read-

ing corresponding to the level of the crest.

In the larger forms of hooks this may be

Fig. 356. done by taking elevations of the crest and

of the point of the hook by means of an

engineer's level and a light rod. With smaller hooks it may be

done by having a stiff permanent hook, the elevation of whoso

point with respect to the crest is determined by precise levels
;

the water is then allowed to rise slowly until it reaches the

point of this stiff hook, when readings of the vernier of the

lighter hook are taken. Another method is to allow a small

depth of water to flow over the crest and to take readings of the

hook, while at the same time the depth on the crest is measured

by a finely graduated scale. Still another way is to allow the

water to rise slowly, and to set the hook at the water level when

the first filaments pass over the crest
;
this method is not a very

precise one on account of capillary attraction along the crest.

As the error in setting the hook is a constant one which affects

all the subsequent observations, especial care should be taken to

reduce it to a minimum by taking a number of observations in

order to obtain a precise mean result.

The hook gage is also used to find the difference of the water

levels in tanks for experiments for the determination of hydraulic
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coefficients, and in wells along pipe lines when experiment.-*

made to investigate ffictional resistances. In general its use is

confined to cases where the head is small, as for high lu-a-:

great a degree of precision is not required (Art. 54).

I'rob. .V>. A wooden tank. 4.52 by 5.78 feet in inside dimenM'oi

leakage near its base. The hook gage reads 2.047 feet at 11.57 A.M.,

1.470 feet at i j.o.s I'.M.. and 0.038 foot at 12.13 P.M. Compute the probable

leakage in the first and last minutes.

ART. 36. PRESSURE GAGES

A pressure gage, often called a piezometer, is an instru-

ment for measuring the pressure of water in a pipe. The form

m. st commonly found in the market has a dial and movable

pointer, the dial being graduated to read pounds per square inch.

The principle on which this gage acts is the same as that of the

Richard aneroid barometer and the Bourdon steam gap-.

Within the case is a small coiled tube closed at one end. while the

other end is attached to the opening through which the water is

admitted. This tube has a tendency to straighten when under

pressure, and thus its closed end moves and the motion is com-

municated to the pointer; when the pressure is relieved, the tube

assumes its original position and the pointer returns to /en.

There is no theoretical method of determining the motion of the

pointer due to a given pressure, and this is done by tests in \vhic h

known pressures are employed, and accordingly the divisions

on the graduated scale are usually unequal. These gages are

liable to error after having been in use for some time, especially

BO at high pressures, and hence should be tested before and after

any im[x>rtant series of experiment-.

In most hydraulic work the head of water causing the pressure

i- required to be known. When /?
is the gage reading in pounds

per square inch, the head of water in feet is // = 2.304/7. or when

/>
is the gage reading in kilograms per square centimeter, the head

of water in meters is // = io/>. The graduation of the gage dial

may be made to read heads directly, so as to avoid the necessity

of numerical reduction.
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Fig. 36a.

The pressure at any point of a pipe may be measured by the

height of a column of water in an open tube, as seen at A in Fig.

360. The upper portion of the tube may be of glass, so that the

position of the water level may be

noted on a scale held alongside.

It is not necessary that the water

column should be vertical, and a

hose is often used, as seen at B,

with a glass tube at its top. At

C is shown a dial pressure gage.

When the head h is directly read

in feet, the pressure in pounds

per square inch may be computed from p = 0.434^. In order

to secure precise results when the water in the pipe is in motion,

it is necessary that a piezometer tube be inserted into the pipe

at right angles ;
when inclined toward or against the current,

the head h is greater or less than that due to the actual pressure

at its mouth.

For high pressures a water column is impracticable on ac-

count of its great height, and hence mercury gages are used.

Fig. 36 shows the principle of construction, a bent tube ABC
with both ends open, having mercury in its lower

portion, and the water column of height h being
balanced by the mercury column of height z. If

the atmospheric pressures at A and C are the same,
it is evident, from Art. 4, that the height h is about

13.6 times the height z, since the specific gravity
of mercury is about 13.6. Now z can be read on

a scale placed between the legs of the tube, and ^

thus h is known, as also the water pressure at the

point B. If the atmospheric pressures at A and C
are different, as will be the case when h is very large,

let &! be the barometer reading at A and bi that at

C, both being in the same linear unit as h and z.

The absolute pressure at B is that due to the

height sh + s'blt where s and s
f

are the specific

gravities of water and mercury, and the absolute
Fig. 366.
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pressure at the same elevation in the other leg is that due to

the height s'(z + In). Since these pressures are equal,

ft -(*'/*)(*+**-W
is the head corresponding to the distance 2 on the scale. The

ratio s'/s is 13.6 approximately, its actual value depending on the

purity of the water and mercury and on the temperature.

Fig. 36c shows the mercury gage as arranged for measuring
the pressure-head at a point A in a water pipe. The top is open
to the air and through it the mercury may be poured in, the cock

E being closed and F open ;
the mercury then stands at the same

height in each tube. The cock F being closed and E opened,

the water enters the left-hand tube, depressing the mercury to

Fig. 36d.

B, causing it to rise to C on the other side. The distance z is

then read on a scale between the two tubes, and the height of

B above A by another scale. The pressure of the water at B
is that due to the head 13.62, and the pressure at A is that due to

the head y -f 13.62. In precise work it is necessary to deter-

mine the exact specific gravity of the mercury and water at dif-

ferent temperatures, so that precise values of the ratio s'/s may
be known. The value of s

f

depends upon the purity of the mer-

cury and is sometimes lower than 13.56.

A better form of mercury gage for use under most conditions

is shown in Fig. 36d. It consists essentially of a heavy cast-iron

reservoir having a large horizontal cross-section as compared with
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that of the glass tube T. The surface of the mercuiy M in this

reservoir therefore remains at a practically constant level, and

this level can be seen through a small glass window provided

for that purpose. The glass tube is inserted through a stuffing

box at S and the flow of mercury into it is controlled by a valve

at C. Cocks at A permit of drawing off and preventing the

entrainment of air, and the water pressure is admitted to the gage

through the valve B. In case observations are to be made on

a pressure which is constantly fluctuating the resulting oscilla-

tions in the tube can be dampened by partially closing the valves

at either or both B and C.

For very high pressures, such as are used in operating heavy

forging-presses, the mercury column of the above gage would be so

long as to render it impracticable, and accordingly other methods must

be employed. Fig. 36e represents a mercury gage constructed on

the principle of the hydraulic press

(Art. 10). W is a small cylinder into

which the water is admitted through
the small pipe at the top, and M is a

large cylinder containing mercury to

which a glass tube is attached. Be-

fore the water is admitted into W the

mercury stands at the level of B in

both the glass tube and large cylinder,

if the piston does not rest on the

mercury. When the water is admitted,

its pressure on the upper end of the piston is pa, if p is the unit-pres-
sure and a the area of the upper end. If A is the area of the lower

end of the piston, the total pressure upon it is also pa, and hence
the unit-pressure on the mercury surface is p a/A, and this is

balanced by the column of height z in the glass tube. For example,
suppose that A =

2ooa, then the unit-pressure on the mercury sur-

face is o.oo$p ; further, if z be 60 inches, the unit-pressure at B is

about 2 X 14-7
= 29-4 pounds per square inch (Art. 4), and accord-

ingly the pressure in W is p = 200 X 29.4
= 5880 pounds per square

inch, which corresponds to a head of water of about 13 550 feet.

Prob. 36. The diameter of the large end of the piston in the last figure
is 15 inches, and the diameter of the mercury column is i inch. Find the
distance the piston is depressed when the mercury rises 60 inches.

Fig. 36c.
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ART. 37. DIFFERENTIAL PRESSURE GAGES

A differential gage is an instrument for measuring diffen

of heads or pressures, and this must be frequently done in hy-

draulic work. One of the simplest forms is that seen in Fig. 37a,

where two water columns from A and D are brought to the side^

of a common scale upon which the difference of height B(

directly read. A better form is one having two glass

Fig. 37o. Fig. 376.

fastened to a scale, these tubes being provided with attachments

upon which can be screwed the hose leading from the pipe. Where

it is desired to measure the difference between two large heads,

provided that this difference is not greater than can be read on

the scale board, this can be done by connecting the tubes across

their tops, as in Fig. 376, and by means of an air pump imposing a

pressure sufficient to bring the water columns within visible range.

After this pressure has been imposed the valve at D is closed and

the difference in the heads read on the scale.

Fig. 37c shows the principle of the mercury differential gage.*

Two parallel tubes are open at the top, and here the mercury is

poured in, the cocks E and F being open and A and C closed ;

the mercury then stands at the same height in each tube. The

cocks E and F being now closed and A and C opened, the water

* For the details of construction see paper by Kuichling in Tran-;u

lions American Society of Civil Engineers, 1892, vol. 26, p. 439.
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enters at A and C, and the mercury is depressed in one tube and

elevated in the other. Let the pressure at B be that due to the

head hi, and the pressure at C be that due to the

head fa, and let hi be greater than hz
;

also let

the distance read on the scale between the two

tubes be z. Then hi= lh + 13.62, or the differ-

ence of the heads of water on B and C is

^ ^ hi hz = 13.62. Thus if z be 1.405 feet, the

jSf
difference of the heads is 19.1 feet. Here, as for

the mercury gage of Art. 36, the specific gravity

of the mercury and water must be known for dif-

ferent temperatures, or comparisons of the instrument with a

standard gage must be made.

When the difference of the heads is small, the water gage,

explained in the first paragraph, cannot measure it with precision,

especially when the columns are subject to oscillations. To in-

crease the distance between B and C and at the same time decrease

the amount of oscillation, the oil differential gage, invented by
Flad in 1885, mav be used. Fig. 37'd shows the principle of

construction.* The cocks A and D being closed and F open,
sufficient oil is poured in at F to partially fill the

two tubes. Then F is closed and the water ad-

mitted at A and D, when it rises to B in one

tube and to C in the other, the oil filling the

tubes above the water. Let s be the specific

gravity of the water and s' that of the oil, let h^

be the head of water on B and hz that on C, then

sh^ =
shi + s'z, whence h^ hi

=
(s'/s)z. Kero-

sene oil having a specific gravity of about 0.79
is generally used, and if the specific gravity of

the water be unity, the difference of the heads is 0.792. Thus
z is greater than A2 hi, and hence an error in reading 2 pro-
duces a smaller error in h^ h^ The specific gravities of the

oil and water must be determined, however, so that s'/s can be

Fig. 37d.

*For the details see paper by Williams, Hubbell,and Fenkell in Trans-
actions of American Society of Civil Engineers, 1902, vol. 47, pp. 72-83.
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expressed to four significant figures when precise work on low

heads is to be done.

The difference of head hi h^ t
determined by these differ-

ential gages, is the difference of the heads due to the pressure at

the water levels B and C. The difference of the actual heads at

the points of connection with the pipe under test is next to be

determined. Fig. 37e shows a mercury gage set over a water

pipe for the purpose of determining the loss of head due to a

Fig. 37e. Fig. 37/.

valve, the velocity of the water being high, so that the difference

of pressure at A and D is large. Fig. 37/ shows an oil gage
set over a similar pipe, the velocity being low, so that the differ-

ence of pressure is small. Let a horizontal plane, represented by
the broken line, be drawn through the zero of the scale of the gage,

and let d be the distance of this plane above the horizontal pipe.

Let b and c be the readings of this scale at the water levels B and

C in the gage tubes, the difference of these readings being z. Let

^ and h^ be the pressure-heads on B and C, and HI and H2 those

on A and D. Then HI = h + b + d and H2
= h^ + c + d,

and the difference of these heads is

which is applicable to both kinds of differential gages. For the

mercury gage the head hi h^ equals 13.62, while the value of

b c is z
;
hence

HI H2
=

13.62 2 = 12.62

For the oil gage hi h-2 is 0.792, while b c is 2, hence

HI H2
=

0.792 -f- 2 = 0.212
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In general, if s' is the ratio of the specific gravity of the mercury

or oil to that of the water, the difference of the pressure-heads

at A and D, which is the loss of head due to the valve, is (V i)z

for the mercury gage and (i
-

s')z for the oil gage.

The principle of the mercury gage can also be applied to the meas-

urement of small differences of head by using a liquid having a specific

gravity but little heavier than water. Thus Cole, in 1897,* employed

a mixture of carbon tetrachloride and gasoline which had a specific

gravity of 1.25; for this mixture HI H2 equals 0.252, or z is four

times the head HI H2 ,
and accordingly when HI H2 is small, the

error in determining it by the reading z is greatly diminished.

It may be also noted that when the tube or pipe is not horizontal, the

expressions (s' i)z and (i s')z give the loss of head between the

two points A and D, although the difference of the actual pressure-

heads may be greater or less according as A is lower or higher than

D (Art. 85).

Prob. 37. In the case of Fig. 37d let the point D be lower than A by

0.45 foot, and let the reading z be 0.127 foot. How much greater is the

pressure-head at A than that at D ?

ART. 38. WATER METERS

Meters used for measuring the quantity of water supplied

to a house or factory are of the displacement type ;
that is, as the

water passes through the meter it displaces or moves a piston,

a wheel, or a valve, the motion of which is communicated through
a train of clock wheels to dials where the quantity that has passed
since a certain time is registered. There is no theoretical way
of determining whether or not the readings of the dial hands are

correct, but each meter must be rated by measuring the discharge,

in a tank. Several meters may be placed on the same pipe line

in this operation, the same discharge then passing through each

of them. When impure water passes through a meter for any

length of time, deposits are liable to impair the accuracy of its

readings, and hence it should be rerated at intervals.

The piston meter is one in which the motion of the water

causes two pistons to move in opposite directions, the water

Transactions American Society of Civil Engineers, 1902, vol. 47, p. 276.
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leaving and entering the cylinder by ports which are opened and

dosed by slide valves somewhat similar to those used in the steam

engine. The rotary meter has a wheel enclosed in a case so thai

it is caused to revolve as the water passes through. The screw

meter has an encased helical surface that revolves on its axis

as the water enters at one end and passes out at the other. The

disk meter has a wabbling disk so arranged that its motion is

communicated to a pin which moves in a circle. In all these, and

in many other forms, it is intended that the motion given to the

pointers on the dials shall be proportional to the volume of water

passing through the meter. The dials may be arranged to read

either cubic feet or gallons, as may be required by the con-

sumers. These meters are of different sizes according to the

quantity of water to be registered. They all occasion considerable

loss of head in the pipe on which they are installed and are of

varying degrees of sensitiveness for small flows. The quantity
of water registered by a meter of these types varies on account of

wear both with its age and with the quality of the water it meas-

ures. For these reasons frequent ratings are desirable.*

The Venturi meter, named after the distinguished hydrauli-

cian who first experimented on the principle by which it operates,

was invented by Her-

schel in iSSy.t Fig. 380

shows a horizontal pipe

having an area a v at

each end, and the cen-

tral part contracted to

the area a2 , with two

small piezometer tubes into which the water rises. When there

is no flow, the water stands at the same level in these two

columns, but when it is in motion, the heights of these columns

above the axis of the pipe are //, and //2 . Let z>, and i^ be tin-

mean velocities in the two cross -sections. Then by Art. 24 the

effective head in the upper section is //, + ?f 2#, and that in

* Transactions American Socirty of Civil Kn^imrr-. iS<)<), vol. 41. and

Proceedings American Water Works Association, 1910.

t Transactions American Society of Civil Knginecrs, 1887, vol. 17, p. 228.
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the small section is hz + v<?/2g ;
if there be no losses caused by

friction, these two expressions must be equal, and hence by the

theorem of (31)2,

%2 -
fli

2 =
2g(hi

-
hz)

Now let Q be the discharge through the pipe, or Q = atvi and also

Q = a2v2 . Taking the values of ^ and v2 from these expressions,

inserting them in the above equation, and solving for Q, gives

Q= V^ -^ (38)

which may be called the theoretic discharge. Owing to fric-

tional losses which occur between the two cross-sections, the

actual discharge q is always less than Q, or q
=

cQ, in which c

is a coefficient whose value generally lies between 0.95 and 0.99.

To determine q, when the coefficient is known, it is hence only

necessary to measure the difference h h^ and then compute

Q by formula (38).

The Venturi meter is used for measuring the discharge through

pipes two inches or more in diameter, the largest meters of

this type yet undertaken being those for the new Catskill Water

System of the city of New York. Each of these meters will

have a capacity of 650 ooo ooo U. S. gallons per day. They will

be constructed of reinforced concrete with bronze throat pieces.

The diameter of each end of the meter tube will be 210 inches,

while that at the contracted section will be 93 inches.

The contracted section or throat of the meter is usually made

from one-quarter to one-ninth of the area of the pipe, and hence

the velocity through it is from four to nine times that in the pipe.

The throat area used in any particular case is determined from

considerations of the various rates of flow to be measured and the

resulting throat velocities which should not, in order that the

quantity may be well recorded on the automatic recording ap-

paratus, fall much below 3 feet or far exceed 40 feet per second.

In practice the two water columns shown on Fig.38a may be

led to a mercury gage, Art. 37, where the difference between the

pressure heads h^ and hz is shown by the difference in level of the
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two mercury columns. A scale

graduated so that hi J% varies

very nearly as q~ will then

enable the rate of flow in the

pipe to be directly read (38).

This meter is extensively used

for the measurement of water

and other liquids, and its

capacity and accuracy are

greater than that of any other

form yet devised.

In Fig. 386 is shown a type
of continuous recording ap-

paratus as constructed by the

Builders Iron Foundry of

Providence, R. I., for use with

the Venturi meter. On the

upper dial, which is driven by
a clock, a pen makes on a

chart a continuous autographic

record of the rate of flow

through the meter. By means

of this chart and a special

planimeter the quantity of

water which has passed the

meter may be determined for

any desired period. Depend-

ing on the gear of the clock,

these charts are changed every

24 hours, every week, or at

any other desired interval.

On the central dial the mech-

anism automatically records

the total quantity of water

which has passed through the

meter from the time it was

set to the time any reading of Fig. 386.
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the face is taken. On the lower dial the pointer continuously

indicates the rate of flow, and, depending on the graduations

of the scale, may indicate in millions of gallons per day, in

cubic meters per second, or in any other desired unit.

A brief description of the operation of this apparatus is as follows.

The two pressure pipes from the meter tube, Fig. 38a, are led to two

mercury chambers connected near their bottoms and so forming a dif-

ferential gage. In each of these chambers is a cast-iron float, and each

float carries a toothed rack. Each rack meshes with a spur gear, both

gears being attached to a single shaft which carries the pointer on the

lower dial. The angular movement of this pointer is therefore exactly

proportional to any change in the difference of the two mercury
levels. Attached to this shaft is a cam, the curve of whose face is

proportional to V/?i h%. As the shaft rotates the cam presses

against and moves a long vertical lever which carries at its top the pen
which makes the record on the chart on the upper dial. It is evident

therefore (38) that the movement of the pen is proportional to q. The
lever which carries the pen is also connected to a clock-driven in-

tegrating mechanism in a manner such that the speed of the counter

increases directly as the angular movement of the vertical lever in-

creases from its starting position. The speed of the counter is at all

times therefore proportional to the rate of flow through the meter, and

thus the quantity passing is continuously integrated. The accuracy
of this recording mechanism can be tested at any tune by comparing
the rate of flow indicated by it with the difference between hi and h%

as shown by a differential gage connected to the two pressure tubes

leading from the meter. A known difference in pressure may also be

imposed upon the pipes leading to the recording mechanism by means
of two water columns and the registration of the apparatus observed

and compared with this known difference. In this way the ap-

paratus can be tested through greater ranges than those usually to

be obtained under service conditions.

Another form of recording apparatus for use with the Venturi
meter is made by the Simplex Valve and Meter Company of

Philadelphia, Pa.* This apparatus performs all of the functions

of that above described. Its operation is also based on a cam
but details of its mechanism are materially different.

*
Proceedings American Water Works Association, 1906.
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The Premier meter* manufactured by The National V

Company makes use of the Venturi principle though in a manner

entirely different from the others above described. It con

essentially of a Venturi tube with a by-pass leading from its up-

stream end to its throat. On this by-pass, which is materially

smaller than the main tube, there is put a displacement meter

of the piston type which records that proportion of the entire flow

which passes through it. The ratio between the total flow and

that indicated by the small meter being determined by experi-

ment, the entire arrangement becomes an instrument for the meas-

urement of water or other liquids. This type of meter is strictly

of the proportional type, and as such, is open to all of the objec-

tions which hold against the class. It gives best results for throat

velocities in excess of 10 feet per second at which the friction

in the small recording meter becomes relatively small and con-

sequently has less effect on the strict proportionality of* flow

through the two branches. This type of meter is adapted to

locations close to the hydraulic gradient, where the styles of re-

cording apparatus hereinbefore described could not be used in

connection with a simple Venturi tube on account of insufficient

submergence of the throat. For the proper operation of these re-

cording mechanisms it is always necessary that the pressure-head

at the throat be a positive quantity.

Still another instrument adapted for making a continuous

record of the flow of water in a pipe is the Pitotmeter as perfected

by Cole.f This apparatus consists essentially of a pair of Pitot

tubes, Art. 41, which can be inserted through a corporation cock to

any position within the pipe. One of these tubes looks upstream
and the other downstream. From them connection is made to

the branches of a differential gage in which is placed a mixture

of carbon tetrachloride and gasoline (Art. 37). The difference in

level between the columns is photographically recorded on a strip

of sensitized paper by means of suitable apparatus, and from this

Proceedings American Water Works Association, 1908; Engineer-

ing News, June 16, 1904.

t Journal New England Water Works Association, 1906; Proceed-

ings American Water Works Association, 1907.
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recorded difference the quantity of water which has passed through

the pipe can be computed. With this apparatus the usual

procedure is to first rate the Pitot tubes (Art. 41), and then after

inserting them into the pipe, making a traverse in order to de-

termine the ratio between the average and maximum velocities.

This ratio usually varies from 0.80 to 0.86 (Art. 83). Thereafter

the tubes are set so as to record the maximum velocity, and by
means of the ratio the average velocity is computed. In order to

insure correct results the tubes must be carefully rated and care

be taken to see that they are kept clean of materials deposited

from the water about their mouths. The Pitotmeter has the

advantage of causing little or no loss of head. It is a very portable

instrument, and is particularly adapted for application to water

waste investigations, pump slippage, and other allied subjects.

AU meters cause a loss in pressure, so that the pressure-head

in the pipe beyond the meter is less than in the pipe where it

enters the meter. This is due to the energy lost in overcoming
friction. For a Venturi tube having a throat area of one-ninth

that of the pipe the loss of head in feet is about 0.002iF2
,
where

V is the velocity in the contracted section in feet per second.

Thus, when the velocity in a water main is 3 feet per second, the

velocity in the contracted section will be 27 feet per second, and

the loss of pressure-head due to the meter tube about 1.53 feet.

Prob. 38. A 1 2-inch pipe delivers 810 gallons per minute through a
Venturi meter, a

2 being one-ninth of %. Compute the mean velocities

in the sections a and a2 . If the pressure-head in t is 21.4 feet, compute the

pressure-head in <z2 .

ART. 39. MEAN VELOCITY AND DISCHARGE

In Chap. 3 the velocity of water flowing from an orifice,

or through a tube or pipe, was regarded as uniform over the

cross-section. If a is that area, and v the uniform velocity, the

discharge is q = ai)
; hence, if a and v can be found by measure-

ment, q is known. In fact, however, the velocity varies in differ-

ent parts of a cross-section, so that the determination of V can-
not be directly made. Yet there always is a certain value for
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v, which multiplied into </ will give the actual discharge q, and

this value is called the mean velocity.

In the case of a stream or open channel the velocity is much
Irss along the sides and bottom than near the middle. A rough
determination of the mean velocity may be made, however, by

observing the greatest surface velocity by a float, and taking

eight-tenths of this for the approximate mean velocity. Thus,

if the float requires 50 seconds to run 120 feet, the mean velocity

is about 1.9 feet per second
;
then if the cross-section be 820 square

feet, the discharge is 1560 cubic feet per second.

The practical object of determining the mean velocity is,

in nearly all cases, to determine the discharge, but as a rule the

mean velocity cannot be directly observed. A knowledge of

its value, however, is necessary in all branches of hydraulics,

since hydraulic coefficients and formulas are based upon it. Ac-

cordingly, many experiments have been made upon small orifices

and pipes by catching the flow in tanks and thus determining q,

then the mean velocity has been computed from v = q/a. This

process has been extended, by indirect methods, to large orifices

and pipes, and finally to canals and rivers.

A common method of finding the discharge of a stream is

to subdivide the cross-section into parts and determine their

areas a 1} 0%, etc., the sum of which is the total area a. Then,

if Vi, v2 , etc., are the mean velocities in these areas, and if these

are determined by observations, the discharge is

q
= aw + (hVz + a3z>3 + etc. (39)

Here the mean velocities may be roughly found by observing

the passage of a surface float at the middle of each subdivision

and multiplying this surface

velocity by 0.9. There

are, however, more precise

methods, one of which will

be explained in Art. 40,

while others will be described in Chap. 10. When q has been

found in this manner, the mean velocity of the stream may be

computed, if desired, by v =
q/a.
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Formula (39) 'applies also to a cross-section of any kind.

Thus, let the pipe of Fig. 396 be divided by concentric circles

into the areas, ait a2 ,
as> #4> and let the mean

velocities v1} z>2 > %> ^4> De determined by obser-

vation for each of these areas
;

the discharge

q is then given by (39). Again, in the con-

duit of Fig. 1260, let a velocity observation be

taken at each of the 97 points marked by a

dot, these points being uniformly spaced over

the cross-section, so that each of the areas alt a2 , etc., may be

regarded as gV a. Then from (39) the discharge is

or v is the sum of the individual velocities divided by 97. In

general, if a cross-section be divided into n equal parts, the mean

velocity is the average of the n observed velocities. This result

is the more accurate the greater the number of parts into which

the cross-section is divided. If the number of parts be infinite

and the water passing through each be called a filament, the mean

velocity in the cross-section may be defined as the average of the

velocities of all the filaments.

Prob. 39. A water pipe, 3 inches in diameter, is divided into three parts

by concentric circles whose diameters are i, 2, and 3 inches. The mean veloc-

ities in these parts are found to be 6.6, 4.8, and 3.0 feet per second. Com-

pute the discharge and mean velocity for the pipe.

ART. 40. THE CURRENT METER

In 1790 the German hydraulic engineer Woltmann invented

an apparatus for measuring the velocity of flowing water which
was later improved by Darcy and others, and is now extensively
used for gaging streams and other open channels. This meter
is like a windmill, having three or more vanes mounted on a

spindle and so arranged that the face of the wheel always stands
normal to the direction of the current, the pressure of which causes
it to revolve. The number of revolutions of the wheel is approxi-

mately proportional to the velocity of the current. In the best

forms of this instrument the number of revolutions made
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in a given time i> determined and recorded by an apparatus

placed near the observer on a bridge, in a boat, or clsewh

In these forms an electric connection is made and broken at ever-\

fifth revolution and a dial on the recording apparatus alTertrd.

By means of a telephone receiver the making and breaking ol

the circuit can be made audible to the observer, who in such

case simply keeps count of the number of clicks and observes on

a stop-watch the time elapsed for a given number of revolutions

The meter may be operate-! by placing it on a rod on which

its position may be changed at will or by suspending it from a

chain or rope. The former of these methods is applicable only

to small streams and to cases where the velocity is low. Under

the second method the meter can best be operated from a bridge,

and in some cases at permanent gaging stations in lieu of a bridge

a wire cable may be stretched across the stream and at a sufficient

height above it, so that

the operator, when

seated in a cage which

travels on the cable,

will have room for

operation. On very

large streams or where

the expense of a cable

is not warranted the

gagings may be made

from a boat. At times ^^1^^ f ^
of low water, in shal-

low streams the meter

is carried and held di-

Fig. 40u.
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rectly in position by the observer who wades out into the

stream. In such cases care must be taken to hold the meter

clear of the disturbing influence of the observer's presence.

Figure 40a shows the recording dial of an electrically operated de-

vice for counting the revolutions of a meter, and in Fig. 40 is shown

the Price current meter, a form extensively used in the United States.

The cups or vanes are kept facing the current by means of the cross-

shaped rudder immediately behind them. At the lower end of the

standard' is a heavy torpedo-shaped lead weight also equipped with

rudder vanes. The supporting cable is shown connected to the upper
end of the standard by a snap, and the electric connection wires are

shown extending from the battery in the leather case through the meter

and thence to the telephone receiver. Both the battery and the re-

ceiver are carried by the observer. In order to assist in keeping the

meter more nearly vertical in swiftly flowing streams a line may be

attached to the supporting cable a short distance above the meter and

carried to some point upstream, so that a pull on it will help to make the

meter better maintain its position.

A current meter cannot be used for determining the velocity
in a small trough or channel, since the introduction of it into the

cross-section would contract the area and cause a change in the

velocity of the flowing water. In large conduits, canals, and rivers

it is, however, a convenient and accurate instrument. By simply

holding it at a fixed position below the surface the velocity at

that point is found
; by causing it to descend at a uniform rate

from surface to bottom the mean velocity in that vertical is

obtained
;
and by passing it at a uniform rate over all parts of

the cross-section of a channel the mean velocity v can be directly
determined. This latter procedure is one which can be put into

practice only in small channels and under unusual conditions.

It is mentioned here simply to illustrate the various uses to

which the current meter may be put.

In operation the current meter is generally suspended from
a cable which is graduated so that the distance of the cen-
ter of the meter below the surface of the water can be directly
read by the observer. The current meter, like every other

instrument, must be used and handled with care to produce
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the best results. Hoyt
* has well summarized recent current

meter practice and the results which have been obtained.

To derive the velocity of the water from the number of

recorded revolutions per second the meter most first be rated

by pushing it at a known velocity through still water. The

best place for doing this is in a pond or navigation canal, where

the water has no sensible velocity. A track is built along the

bank on which a small car can be moved at a known velocity.

From this car the meter is suspended into the water either

from a rod or a cable, and the method of suspension used should

be the same as that to be employed in actual service. The lowest

velocity of the car should be that at which the meter will just start

and continue revolving; this velocity is from o.i to 0.2 feet per

second. The highest velocity should be somewhat in excess

of the actual velocities to be observed, and ratings are usually

carried up to velocities of from 10 to 15 feet per second. It

is always found that the number of revolutions per minute

is not exactly proportional to the velocity of the car, and hence

when the meter is held stationary in running water, the velocity

of the water is not proportional to the number of revolutions.

From the observations made at the different known velocities

there is prepared a rating table showing the velocity of the water

in feet per second corresponding to the number of meter revo-

lutions. This form of table is best, since in making observations

best results are obtained by noting the number of seconds required

to complete a certain number of revolutions. To make such a

table the known velocities of the car are taken as abscissas

on cross-section paper and the number of revolutions as ordinates,

and a point corresponding to each observation is plotted. A mean

curve may then be drawn to agree as closely as possible with the

plotted points, and from this curve the velocity corresponding to

any number of revolutions can be taken off. This curve may be

expressed by an equation of the form V = a + bn or V = a + bn

4- en2
,
in which V is the velocity of the car in feet per second and

n in the number of revolutions of the meter per second. By the

*
Transactions American Society of Civil Engineers, 1910, vol. 66, p. 70.
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aid of the Method of Least Squares the constants of the equation

may then be computed and the curve determined (Art. 42).

In the case of the small Price meter it has been found that the

curve is very closely approximated by two straight lines AB and

BC, as shown in Fig. 40c, which is a typical rating curve for this

"01234 567 8 9 10 11 12 13 14

Velocity in Feet per Second

Fig. 40r .

type of meter.* This curve, was based on thirty-five observa-

tions at different velocities, and practically all of them fell on

the line ABC which is also very nearly a straight line.

An examination f of the rating tables of a number of meters

has shown that possible errors due to differences in rating are

quite small, and that a Price meter in good condition can be used

with a standard rating table without serious error for all veloc-

ities greater than 0.5 foot per second and then generally within

about 2 percent.

While the current meter is an extensively used instrument, there

are, as in most other hydraulic work, certain features which are not

yet fully understood. These are the differences shown in the results of

the ratings of the same meter when held on a rod and when suspended

by a cable.t It has also -been found that the rating of a meter made in

still water differs somewhat from that made in running water,} but

no successful means for making direct running water ratings have
as yet been devised. Many good comparisons between current meter

gagings and weir measurements have been made, but the current meter

* Transactions American Society of Civil Engineers, 1910, vol. 66, p. 83.
t Transactions American Society of Civil Engineers, 1910, vol. 66, p. 83.

J Water Supply and Irrigation Paper, No. 95, U. S. Geological Survey.
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velocities in all of them have Urn relatively low, so that no complete

comparison has up to the present been possible.

I'roh. 10. In order to rate a certain < urrent meter, three observations

were taken in still water, as follows :

\Vlority of the car = 2.0 .$.S 7.4 feet per second

Revolutions per minute =30 60 1 20

Plot these observations on cross-section paper and deduce, without using

the Method of Least Squares, the relation between V and n in the equation
V = a + bn.

ART. 41. THE PITOT TUBE

About 1750 the French hydraulic engineer Pitot invented a

device for measuring the velocity in a stream by means of the

velocity-head which it will produce. In its simplest form it

consists of a bent tube, the mouth of which is placed so as to

directly face the current. The water then rises in the vertical

part of the tube to a height // above the surface of the flowing

stream, and this height is equal to the velocity-head v2/2g, so that

the actual velocity z> is in practice approximately equal to

As constructed for use in

streams, Pitot 's appa-
ratus consists of two

tubes placed side by side

with their submerged
mouths at right angles,

so that when one is op-
IM^. 4 la. !!.. 41/>.

posed to the current, as

seen in Fig. 416, the other stands normal to it, and the water

surface in the latter tube hence is at the same level as that <>i

the stream. Both tubes are provided with cocks which may
be closed while the instrument is immersed, and it can be then

lifted from the water and the head h be read at leisure. It is

found that the actual velocity is always less than V^'//. and

that a coefficient must be deduced for each instrument by mov-

ing it in still water at known velocities. Pitot 's tube has t he-

advantage that no time observation is needed to determine tin-

velocity, but it has the disadvantage that the distance // is
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usually very small, so that an error in reading it has a large

influence. Although the instrument was .improved by Darcy in

1856 and used by him for some stream measurements, it was for

a long time regarded as having a low degree of precision.

When using a Pitot tube for measuring the velocity in a

stream, the two columns maybe raised above the level of the water

in the stream and brought to a height convenient for observation

by partly exhausting the air from the tubes above the columns.

This procedure is analogous to the imposing of an air pressure

above the water columns in the case of high heads, as was de-

scribed in Art. 37.

In 1888 Freeman made experiments on the distribution of

velocities in jets from nozzles, in which an improved form of

Pitot tube was used.* The point of the tube facing the current

was the tip of a stylographic pen, the diameter of the opening

being about 0.006 inch. This point was introduced into differ-

ent parts of the jet and the pressure caused in the tube was meas-

ured by a Bourdon pressure gage reading to single pounds.
The velocities of the jets were high ;

for example, in one series

of observations on a jet from a if-inch nozzle, the gage pressures
at the center and near the edge were 51.2 and 18.2 pounds per

square inch, which correspond to velocity-heads of 118.2 and 42.0

feet, or to velocities of 87.2 and 52.0 feet per second. By com-

puting the mean velocity of the jet from measurements in con-

centric rings (Art. 39) and also from the measured discharge,
Freeman concluded that any velocity as determined by the tube
was smaller than that computed from v = -V^gh by less than one

percent. This investigation established the fact that the Pitot

tube is an instrument of great precision for the measurement
of high velocities.

Experiments on the flow of water in pipes, in which Pitot
tubes were successfully used, were made in 1897 by Cole at Terre

Haute, and in 1898 by Williams, Hubbell, and Fenkell at Detroit.!
In the Detroit experiments the tube was introduced into the pipe

Transactions American Society of Civil Engineers, 1889, vol. 21, p. 413.
t Transactions American Society of Civil Engineers, 1902, vol. 47, pp. 12, 275.
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through an opening provided with a stuffing-box, so that the

point of the tube might be placed at any desired position. The

tubes had openings at their points ^ inch in diameter and other

openings of the same size on their sides to admit the static pres-

sure of the water. These latter openings led to a common chan-

nel parallel to that leading from the point, and each of these was

connected to a rubber hose running to a differential gage, con-

sisting of two parallel glass tubes open at the top, where the dif-

ference of head was read on a scale. In order to be able to deduce

the velocities in the pipe from the readings of the gage, the Pitot

tubes were rated by moving them in still water at known veloc-

ities as for the current meter (Art. 40). Thus a coefficient c was

derived for each tube for use in the formula v = c ^/2gh. This

coefficient was found to range from 0.86 to 0.95 for different tubes,

and it varied but little with v.

Many different forms of Pitot tubes have been made and experi-

mented upon. Each of these forms has, in common with the others,

the pressure opening which faces the current, though the shape and

dimensions of this opening differ materially in the various types. In

some of them the static pressure is admitted through a hole in the side

of the apparatus, while in others it is admitted through a number of

such holes. In another type the tube is made symmetrical with an

opening looking downstream. In this case the water column connected

with the upstream opening will indicate the velocity head, while that

connected with the opening which faces downstream will indicate

a pressure less than the static head on account of the negative head

induced by the arrangement. The difference between the two columns

is thus increased and its reading on the scale rendered more easy, while

the proportional error of any reading is also reduced. In Fig. 4 It is

shown a form of tube used by the U.S. Geological Survey* for the meas-

urement of velocity in small and shallow streams in connection with

experiments on the transporting capacity of currents, while in Fig. 41rf

is shown the type used in connection with the Pitotmeter (Art. 38).

In this figure is shown also the method of introducing the tubes into

a pipe where the velocity is to be measured.

Some recent comparisons
* between the still and moving water

ratings of Pitot tubes indicate that there may be a difference between

*
Engineering News, Aug. 12, 1909.
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the results obtained by these two methods. It is desirable, of course,

that every instrument should be rated under conditions similar to those

in which it is to be used. One of the ways of rating a Pitot tube

Fig. 41c.

in running water is that suggested and used by Judd and King*

who placed the tube used by them at the contracted section of a jet

and concluded that its coefficient was i.oo.

Prob. 41. Explain how a well-rated Pitot tube may be used to measure

the speed of a boat or ship.

ART. 42. DISCUSSION OF OBSERVATIONS

An observation is the recorded result of a measurement. All

measurements are affected with errors due to imperfections of

the instrument and lack of skill of the observers, and the recorded

results contain these errors. Thus, if 6.05, 6.02, 6.01, and 6.04

inches be four observations on the diameter of an orifice, all of

*
Engineering News, Sept. 27, 1906.
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these cannot be correct, and probably each is in error. The I

that can be done is to take the average of these observations, or

6.03 inches, as the most probable result, and to use this in the

computations.

An observer is often tempted to reject a measurement when

it differs from others, but this can only be allowed when he is

convinced that a mistake has been made. A mistake is a large

error, due generally to carelessness, and must not be confounded

with the small accidental errors of measurement. When a series

of observations is placed before a computer, he should never be

permitted to reject one of them, unless there is some remark in

the note-book which casts doubt upon it.

Graphical methods of discussing and adjusting observations,

like that mentioned in Art. 40, are of great value in hydraulic

work. As another example, the following observations made by

Darcy and Bazin on the flow of water in a rectangular trough,

1.8 1 2 meters wide and having the uniform slope 0.049, m&y be

noted. Water was allowed to run through it with varying depths,

and for each depth the mean velocity (Art. 39) and the hydraulic

mean depth (Art. 112) was determined by measurement. Let

v be the mean velocity and r the hydraulic mean depth ;
then five

measurements gave the following observations, v being in meters

per second and r in centimeters. Let it be assumed that the

No. = i 2 3 4 5

v= 1.73 1.98 2.17 2.33 2.46

r = u.4 14.4 17.0 19.2 21.2

relation between v and r is of the form v = mrn ,
and let it be re-

quired to determine the most probable values of m and n.

For each of these observations a point may be plotted on cross-

section paper, taking the values of v as ordinates and those of r

as abscissas, and a smooth curve may then be drawn so as to agree

as nearly as possible with the points. Such a curve, however,

is of little assistance in determining the values of m and n, unless

the curve should be a straight line drawn through the origin, in

which case it is plain that n is unity and that m is the tangent erf



106 Chap. 4. Instruments and Observations

the angle that the line makes with axis of abscissas. In this case

no straight line can be drawn approximating to the points and

passing through the origin, but the plot gives the curve shown

in Fig. 22a. If, however, the logarithm of each side of the as-

sumed formula be taken, it becomes

log v = n log r + log m

which represents a straight line if log v be considered as the

variable ordinate and log r as the variable abscissa, log m being
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the former being generally a little smaller, which is due to the

fact that only two significant figures are found from the plot.

Whenever a series of plotted points can be closely represented

by a straight line on logarithmic section paper, the equation be-

tween the variables is an exponential one. Numerous exponen t ia I

formulas for the flow of water in pipes and channels rest upon
the judgment of the investigator in deciding that the plotted

points are sufficiently well represented by a straight line.

There is a process, known as the Method of Least Squares, by
which the constants of an empirical formula may be obtained from ob-

servations with a higher degree of precision than by any graphic method.

Its application to the above case will here be given. Let the simul-

taneous values of log v and log r for each experiment be placed in

the logarithmic formula as follows :

for No. i, 0.238= i.o57n + logw
for No. 2, 0.297

= 1. 158^4- log m
for No. 3, 0.336 = i.23ow + logw
for No. 4, 0.367

=
1.283w + log w

for No. 5, Q-39 1 = 1.326^ + log w

These five equations contain two unknown quantities, n and log m,
but no values of these can be found that will exactly satisfy all the

equations. The best that can be done is to find the values that have

the greatest degree of probability, and these will satisfy the equations

with the smallest discrepancies. To do this, let each equation be

multiplied by the coefficient of n in that equation and the results be

added
;
also let each equation be multiplied by the coefficient of log m

in that equation and the results be added. Thus are found the two

normal equations containing the two unknown quantities :

1.998
=

7 .375*1 -f 6.054 log m
1.629

=
6.0541* + 5.000 log m

and the solution of these gives n =
0.571 and log m =

0.366.

Since 0.366 equals 1.634, the value of m is 0.431, and then

log v = 0.571 log r 0.366 or v = o.43ir-
871

is the empirical formula for this particular case.

The Method of Least Squares is usually more laborious than the

graphical method, but it has the great advantage that its results are
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the most probable ones that can be derived from the given data. It

has the further advantage that all computers will derive the same

results, whereas in the graphic method the results will usually differ,

because the position of the line drawn on the plot is affected by the

different degrees of judgment and experience of the draftsmen. It

will be seen from Fig. 42b that it is not very easy to determine close

values of log m since the plotted points are so far away from the origin.

Prob. 42a. In order to rate a certain current meter four observations

were taken in still water as follows :

Velocity of the car 0.7 2.4 4.7 9.3 feet per second

Revolutions of meter 18 60 120 240 per minute

Find the values of a and b in the formula v = a -f bn, both by plotting and

by the method of least squares.

Prob. 426. Three observations of horizontal angles are made at the

station O, which give AOB= 62 i>j', BOC= 2o3s', AOC= 82 $$'. Ad-

just these observations by the method of least squares so that the large

angle may be equal to the sum of its parts.
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CHAPTER 5

FLOW OF WATER THROUGH ORIFICES

ART. 43. STANDARD ORIFICES

Orifices for the measurement of water are usually placed in

the vertical side of a vessel or reservoir, but may also be placed

in the base. In the former case it is understood that the upper

edge of the opening is completely covered with water
;
and gen-

erally the head of water on an orifice is at least three or four times

its vertical height. The term ''standard orifice" is here used to

signify that the opening is so arranged that the water in flowing

from it touches only a line, as would be the case in a plate of no

thickness. To secure this result the inner edge of the opening has

a square corner, which alone is touched by the water. In pre-

cise experiments the orifice may be in a metallic plate whose

thickness is really small, as at A in the figure, but more commonly
it is cut in a board or plank, care being taken that the inner edge

is a definite corner. It is usual to bevel the outer edges of the

orifice, as at C, so that the escaping jet

may by no possibility touch the edges

except at the inner corner. The term
"
orifice in a thin plate" is often used

to express the condition that the water

shall only touch the edges of the open-

ing along a line. This arrangement

may be regarded as a kind of standard

apparatus for the measurement of

water
; for, as will be seen later, the discharge is modified when

the inner corner is rounded, and different degrees of rounding

give different discharges. The standard arrangements shown in

Fig. 43a are accordingly always used when water is to be meas-

ured by the use of orifices.
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The contraction of the jet which is always observed when

water issues from a standard orifice, as described above, is a most

interesting and important phenomenon. It is due to the circum-

stance that the particles of water as they approach the orifice

move in converging directions, and that these directions continue

to converge for a short distance beyond the plane of the orifice.

It is this contraction of the jet that causes only the inner corner

of the orifice to be touched by the escaping water. The appear-
ance of such a jet under steady flow, issuing from a circular ori-

fice, is that of a clear crystal bar whose beauty claims the ad-

miration of every observer. The convergence due to this cause

ceases at a distance from the plane of the orifice of about one-half

its diameter. Beyond this section the jet enlarges in size if it be

directed upward, but decreases in size if it be directed downward
or horizontally.

The contraction of the jet is also observed in the case of rec-

tangular and triangular orifices, its cross-section being similar

. __
j~

n to that of the orifice until the

I I (J C^j} ^p* Place of greatest contraction is

passed. Fig. 43b shows in the top
row cross-sections of a jet from a

/\ Q c

s"j?

C

^fj^

?
square orifice, in the middle row

those from a triangular one, and
in the third row those from an

O O C~^>
elliPtical orifice. The left-hand

diagram in each case is the cross-

section of the jet near the place
of greatest contraction, while the following ones are cross-sec-

tions at greater distances from the orifice, and the jets are sup-
posed to be moving horizontally or nearly so.

Owing to this contraction, the discharge from a standard
orifice is always less than the theoretic discharge, which, from
Arts. 22 and 30, would be expressed by

Q = a^/^gh (43)
where a is the area of the orifice and h the head above its center.
It is evident that the quantity of water passing the plane of the
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orifice and that passing the plane of the contracted section in any
unit of time are the same, and since there probably can be no

appreciable change in the density of the water, there must there-

fore be an increase in velocity between these two planes. The

reasons for such an increase are not fully known. It is not prob-

able that the velocity at the center of the jet changes materially,

but rather that the increase occurs in its outer filaments, so that at

the contracted section they are all traveling parallel with each

other and at the same velocity.*

It is the object of this chapter to determine how the theoretic

formulas for orifices given in Chap. 3 are to be modified so that

they may be used for the practical purposes of the measurement

of water. This is to be done by the discussion of the results of

experiments. It will be supposed, unless otherwise stated, that

the size of the orifice is small compared with the cross-section of

the reservoir, so that the effect of velocity of approach may be

neglected (Art. 24).

Prob. 43. At a distance from a circular orifice of one-half its diameter

a jet has a diameter of i inch and a velocity of 16 feet per second. When it

is directed vertically downward, what is the diameter of a section 5 feet

lower? When it is directed vertically upward, what is the diameter of a

section 5 feet higher ?

ART. 44. COEFFICIENT OF CONTRACTION

The coefficient of contraction is the number by which the area

of the orifice is to be multiplied in order to give the area of the

section of the jet at a distance from the plane of the orifice of

about one-half its diameter. Thus, if c' be the coefficient of con-

traction, a the area of the orifice, and a! the area of the contracted

section of the jet, then
, _ ,

, ...

The coefficient of contraction for a standard orifice is evidently

always less than unity.

The only direct method of finding the value of c' is to measure

by calipers the dimensions of the least cross-section of the jet.

The size of the orifice can usually be determined with precision,

*
Engineering News, Sept. 27, 1906.
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and with care almost an equal precision in measuring the jet. To

find c' for a circular orifice let d and d' be the diameters of the

sections a and a'
;
then

c
' = a

'

Ia = (d'/d)*

Therefore the coefficient of contraction is the square of the ratio

of the diameter of the jet to that of the orifice. The first meas-

urements were made by Newton * who found the ratio of d' to d

to be 21/25, which gives for c the value 0.73. The experiments of

Bossut gave from 0.66 to 0.67 ;
and Michelotti found from 0.57

to 0.624 with a mean of 0.61. Eytelwein gave 0.64 as a mean

value, and Weisbach- mentions 0.63.

The following mean value will'be used in this book, and it

should be kept in mind by the student :

Coefficient of contraction c' = 0.62

or, in other words, the minimum cross-section of the jet is 62 per-

cent of that of the orifice. This value, however, undoubtedly
varies for different forms of orifices and for the same orifice under

different heads, but little is known regarding the extent of these

variations or the laws that govern them. Probably c' is slightly

smaller for circles than for squares, and smaller for squares than

for rectangles, particularly if the height of the rectangle is long

compared with its width. Probably also c' is larger for low

heads than for high heads.

Judd and King in 1906, f using a specially constructed pair of

calipers,| found the following values for the coefficient of con-

traction for standard orifices :

Orifice diameter, inches, 0.75 i.oo 1.50 2.00 2.50

Coefficient of contraction, 0.6134 0.6115 0.6051 0.6082 0.5955

Prob. 44. The diameter of a circular orifice is 1.995 inches. Three

measurements of the diameter of the contracted section of the jet gave 1.55,

1.56, and 1.59 inches. Find the mean coefficient of contraction.

Philosophise Naturalis Principia Mathematica, 1687, Book II, prop. 36.

t Engineering News, Sept. 27, 1906. J Science, March 4, 1904.



Coefficient of Velocity. Art. 45 113

ART. 45. COEFFICIENT OF VELOCITY

The coefficient of velocity is the number by which the theoretic

velocity of flow from the orilice is to be multiplied in order to give

the actual velocity at the least cross-section of the jet. Thus, if

Ci be the coefficient of velocity, V the theoretic velocity due to the

head on the center of the orifice, and v the actual velocity at the

contracted section, then

i-ftF-ftV31 (45)

The coefficient of velocity must be less than unity, since the

force of gravity cannot generate a greater velocity than that due

to the head.
*

The velocity of flow at the contracted section of the jet cannot

be directly measured. To obtain the value of the coefficient of

yelocity, indirect observations have been taken on the path of the

jet. Referring to Art. 25, it will be seen that when a jet flows

from an orifice in the vertical side of a vessel, it takes a path whose

equation is y = gx
2
/2v

2
,
in which x and y are the coordinates

of any point of the path measured from vertical and horizontal

axes, and v is the velocity at the origin. Now placing for v its

value Ci ^/2gh, and solving for cly gives

d = x/2 Vhy
Therefore q becomes known by the measurement of the head h

and the coordinates x and y. In making this experiment it would

be well to have a ring, a little larger than the jet, supported by a

stiff frame which can be moved until the jet passes through the

ring. The flow of water can then be stopped, and the coordinates

of the center of the ring determined. By placing the ring at

different points of the path different sets of coordinates can be

obtained. The value of x should be measured from the contracted

section rather than from the orifice, since v is the velocity at the

former point and not at the latter.

By this method of the jet Bossut in two experiments found for

the coefficient of velocity the values 0.974 and 0.980, Michelotti

in three experiments obtained 0.993, 0.998, and 0.983, and Weis-

bach deduced 0.978. Great precision cannot be obtained in these
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determinations, nor indeed is it necessary for the purposes of

hydraulic investigation that ^ should be accurately known for

standard orifices. As a mean value the following may be kept

in the memory :

Coeffident of velocity ^ =
o>98

or, the actual velocity of flow at the contracted section is 98 per-

cent of the theoretic velocity. The value of GI for the standard

orifice is greater for high than for low heads, and may probably

often exceed 0.99.

Another method of finding the coefficient GI is to place the

orifice horizontal so that the jet will be directed vertically up-

ward, as in Fig. 22. The height to which it rises is the velocity-

head h = v
2
/2g, in which v is the actual velocity Ci ^/2gh. Accord-

ingly, hQ
= c^h, from which GI may be computed. For example

if, under a head of 23 feet, a jet rises to a height of 22 feet, the

coefficient of velocity is

=
A/22/23

=
0.978

This method, however, fails to give good results for high veloci-

ties, owing to the resistance of the air, and moreover it is impossi-

ble to measure with precision the height h Q .

For a vertical orifice Poncelet and Lesbros found, in 1828,

that the coefficient GI was sometimes slightly greater than unity,

and this was confirmed by Bazin in 1893. This is probably
due to the fact that the head is greater for the lower part of the

orifice than for the upper part, and hence ^/2gh does not represent

the true theoretic velocity. The same experimenters found no

instance of a horizontal orifice where the coefficient exceeded unity.

Since the coefficient of velocity is the ratio between the coefficient

of discharge (Art. 46) and the coefficient of contraction, it may be

computed from observations on these quantities. Thus Judd and

King,* using the average of the coefficients of contraction shown
in Art. 44 and the average of the coefficients of discharge shown in

Art. 46, found the following :

coefficient of velocity = Coefficient of discharge = 0.60664 = g
coefficient of contraction o.60674

*
Engineering News, Sept. 27, 1906.
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By traversing the jets with a Pitot tube they also determined the co-

efficient of velocity to be 0.99993 and showed that the velocity at

the contracted area is uniform throughout its cross-section. From

the results of these experiments they concluded that the coefficient

of velocity is unity and hence adopted the term
"
frictionless orin

as descriptive of the particular standard orifices used by them.

Prob. 45. The range of a jet is 13.5 feet on a horizontal plane 2.82 feet

below the orifice which is under a head of 14.38 feet. Compute the coeffi-

cient of velocity.

ART. 46. COEFFICIENT OF DISCHARGE

The coefficient of discharge is the number by which the theo-

retic discharge is to be multiplied in order to obtain the actual

discharge. Thus, if c is the coefficient of discharge, Q the theo-

retical, and q the actual discharge per second, then

q
= cQ (46):

Here also the coefficient c is a number less than unity.

The coefficient of discharge can be accurately found by

allowing the flow from an orifice to fall into a vessel of constant

cross-section and measuring the heights of water by the hook gage

(Art. 35). Thus q is known, and Q having been computed,

e-q/Q (46),

For example, a circular orifice of o.i foot diameter was kept un-

der a constant head of 4.677 feet
; during 5 minutes and 32J seconds

the jet flowed into a measuring vessel which was found to contain

27.28 cubic feet. Here the actual discharge was

q
=

27.28/332.2
= 0.08212 cubic feet per second

The theoretic discharge, from formula (30), is

Q = TT X o.o5
2 X 8.02 V4.677 =

0.1361 cubic feet per second

Then the coefficient of discharge is found to be

c = 0.08212/0.1361
= 0.604

In this manner thousands of experiments have been made upon
different forms of orifices under different heads, for accurate

knowledge regarding this coefficient is of great importance in

practical hydraulic work.
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The following articles contain values of the coefficient of

discharge for different kinds of orifices, and it will be seen that

in general c is greater for low heads than for high heads, greater

for rectangles than for squares,' and greater for squares than for

circles. Its value ranges from 0.59 to 0.63 or higher, and as a

mean to be kept in mind the following value may be stated :

Coefficient of discharge c = 0.6 1

or, the actual discharge from a standard orifice is, on the average,

about 6 1 percent of the theoretic discharge.

The coefficient c may be expressed in terms of the coefficients

c' and GI. Let a and a' be the areas of the orifice and the cross-

section of the contracted jet, and Q and q the theoretic and actual

discharge per second. Then, since a''/a
= c

Q

and therefore the coefficient of discharge is the product of the

coefficients of contraction and velocity.

The coefficient of discharge is of greater importance than the

coefficients of contraction and velocity, since it is the quantity

generally used in making measurements of water. Tabulations

of its values for all practical cases are given below.

Prob. 46. The diameter of a contracted circular jet was found to be

0.79 inches, the diameter of the orifice being i inch. Under a head of 16

feet the actual discharge per minute was found to be 6.42 cubic feet. Find

the coefficient of velocity.

ART. 47. CIRCULAR VERTICAL ORIFICES

Let a circular orifice of diameter d be in the side of a vessel

and let h be the head of water on its center. Then, from Art.

22, the theoretic mean velocity is ^/igh, and from Art. 30 the

theoretic discharge is

which applies when h is large compared with d.

To deduce a more exact formula let the radius of the circle

be r, and let an elementary strip be drawn at a distance /above
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the center ; the length of this is ==
2 Vr2

/, its area is 2&y Vr2
y
2
, and

the head upon it is //
-

y. Then the

theoretic discharge through this strip

1S

.To integrate this (h y) is to be Fig. 47.

expanded by the binomial formula. Then it may be written

Each term of this expression is now integrable, and taking the

limits of y as + r and r the entire circle is covered, and Q is

found. Finally, replacing r by J d there results

which is the theoretic discharge from the circular orifice.

It is .plain that this formula gives values which are always
less than those found from the approximate formula of the first

paragraph. Thus for h = d the quantity in the parenthesis

is 0.992 and for h = 2d it is 0.998. Hence the error in using the

approximate formula is less than three-tenths of one percent
when the head on the center of the orifice is greater than twice

its diameter.

For most cases, then, the actual discharge from a circular

vertical orifice of area a may be computed from

q
= c a 2g=8.02 ca (47)!

in which c is the coefficient of discharge. When h is smaller

than two or three times the diameter of the orifice, and when pre-

cision is required, then

q =[i -0.0781 2(d/h)
z
-o.ooo3o6(d/h)

4
]
8.02 caVh (47) 2

is the formula to be used. Here a may be taken from Table F
(Art. 205) for the given diameter expressed in feet, h is to be

taken in feet, and then q will be in cubic feet per second.
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Table 47a gives values of c for circular orifices as determined

by Hamilton Smith in a discussion of all the best experiments.*

They apply only to standard orifices with definite inner edges.

TABLE 470. COEFFICIENTS FOR CIRCULAR VERTICAL ORIFICES

Head
h

in Feet
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of one or two units in the last figure, the third figure of this value

of q is subject to the same uncertainty.

Judd and King
* determined in 1906 the following values of

the coefficient of discharge for circular vertical orifices :

Orifice diameter, inches 0.75 i.oo 1.50 2.00 2.50

Coefficient of discharge 0.611 0.6097 0.6085 0.6083 -5956

The heads under which the observations were made ranged from

5 to 90 feet and the results showed no appreciable change in the

coefficient of discharge due to increased head. For example
the following are part of the results found for a 2-inch orifice :

Head in feet = 5.00 9.08 17.79 36.12 57.70 92.01

Coefficient c = 0.6084 0.6083 0.6080 0.6082 0.6081 0.6080

Biltonf in 1907 made a series of experiments on orifices, rang-

ing from 0.025 to 0.75 inches in diameter and determined the

following coefficients for varying heads.

TABLE 476. COEFFICIENTS OF DISCHARGE FOR SMALL ORIFICES

Head
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where h is in feet and d in inches. Applying this formula to an

orifice 2 inches in diameter under a head of 19 feet, c is found to

be ex595 1 while the experiments indicated a value of 0.5947.

Prob. 47. Compute the probable actual discharge from a circular orifice

8 inches in diameter, under a head of 15 inches.

ART. 48. SQUARE VERTICAL ORIFICES

If the size of an orifice in the side of a vessel is small compared

with the head, the theoretic velocity of the outflowing water may
be taken as ^/2gh, where h is the head on the center of the orifice.

For a rectangular orifice under this condition the theoretic dis-

charge is
Q = bd^gh

where b is the width and d the depth of the orifice. When b

is equal to d, the rectangle becomes a square.-
f
--

*
- To deduce a more exact formula, let

/?! be the head on the upper edge of the

orifice and 1% that on the lower edge.

Consider an elementary strip of area b By

at a depth y below the water level. The

velocity of flow through this elementary

strip is ~\/2gy, and the theoretic discharge per second through it is

SQ-WyVagy

Integrating this between the limits h% and h\, there results

which is the true theoretic discharge from the orifice.

To ascertain the error caused by using the approximate for-

mula, let h be the head on the center of the rectangle ;
then /^

= h + i d and hi = h %d. Developing by the binomial formula

the values of k? and h^, the last formula becomes

- (d/hY WkY --etc.

and this shows that the discharge computed by using the approx-
imate formula is always too great. For k = d, the quantity in
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the parenthesis is 0.989, and for // = 2</, it is 0.997. Accordingly,

the error of the approximate formula is only three-tenths of

one percent when the head on the center of the rectangle is

twice the depth of the orifice.

For most cases, then, the actual discharge from a square

vertical orifice may be very approximately found from

q
= c - W- V^gh = 8.02 cb* Vh (48)i

where b is the side of the square and c is the coefficient of dis-

charge. When h is smaller than two or three times the side of the

orifice, and when precision is required,

?- 5-347 *(*.* -*!*) (48),

is the formula to be used. The linear quantities are to be taken

in feet, and then q will be in cubic feet per second.

Table 48 gives values of the coefficient c for standard square

orifices, taken from a more extended one formed by Hamilton

TABLE 48. COEFFICIENTS FOR SQUARE VERTICAL ORIFICES

Head
h

in Feet
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increases and as the head increases. Comparing this table

with Table 47'a it is seen that the coefficient of discharge for a

square is always slightly larger than that for a circle having a

diameter equal to the side of the square. The values above the

horizontal lines in the last three columns are to be used in the

exact formula (48) 2 when precision is required, and all other values

in the approximate formula (48) i.

There are few recorded experiments on large square orifices.

Ellis measured the discharge from a vertical orifice 2 feet square*

and deduced the following coefficients for use in the approximate
formula :

for h = 2.07 feet, c = 0.6n
for h = 3.05 feet, c = 0.597

for h = 3.54 feet, c = 0.604

which indicate that a mean value of 0.60 may be used for large

square orifices under low heads.

Prob. 48. Find from the table the coefficient for an orifice 3 inches square
when the head on its center is 1.8 feet.

ART. 49. RECTANGULAR VERTICAL ORIFICES

The theoretic formulas of Art. 48 apply to rectangles of width

b and depth d, and the approximate formula for computing the

actual discharge is

q
= cbd VajJA

= 8.02 cbd V& (49)

in which c is the coefficient of discharge, b the width and d the

depth of the rectangular orifice, and h the head on its center.

Table 49 gives values of the coefficient c which have been

compiled and rearranged from the discussion given by Fanning. f
It is seen that the variation of c with the head follows the

same law as for circles and squares. It is also seen that for a

rectangle of constant breadth the coefficient increases as the

depth decreases, from which it is to be inferred that for a rec-

tangle of constant depth the coefficient increases with the breadth,

*
Transactions American Society of Civil Engineers, 1876, vol. 5, p. 92.

t Treatise on Water Supply Engineering (New York, 1888), p. 205.
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TABLE 49. COEFFICIENTS FOR RECTANGULAR ORIFICES

i FOOT WIDE

Head
h

in Feet
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modified because it takes no account of the contraction of the

jet. Let v be the velocity at the contracted section of the jet

and a the area of that section ;
let ^ be the velocity through the

horizontal cross-section A of the vessel
;
then a'v = Av^ But

if a be the area of the orifice and c' the coefficient of contraction,

then a' equals ac
f and hence c'av = A^. Now the effective

head on the orifice is

and the velocity v is given by c ^/2gH where Ci is the coefficient

of velocity. Substituting in the last equation v
2
/2gc^ for H and

cva/A for v1} and noting that c^c' is equal to the coefficient of

discharge c, it reduces to

(50).

which is the velocity of the jet at a section distant from the orifice

about one-half its diameter. The discharge q is found by multi-

plying this by the area c'a of that cross-section, whence

is the formula for the actual discharge, and this includes no

coefficient except that of discharge.

These formulas apply to orifices of any kind, and when c

equals unity, they reduce to the theoretic expressions established

in Art. 24. When a/A is less than 1/5, as is almost always the

case in practice, the last formula may be written, with sufficient

precision,
q =( I + i

(ca/A^ca V^k (50),

For example, let a square tank, 4X4 feet in horizontal cross-sec-

tion, have a standard square orifice one square foot in area, and

let the head on its center be 16 feet. From Table 48 the coeffi-

cient of discharge is 0.60, and the formula gives

q
=

(i 4- 0.0007) X 0.60 X i X 8.02 X 4 = 19.3 cubic feet per second

For this case it is seen that the influence of velocity of approach
is expressed by the addition of 0.0007 to unity, which is an in-



Velocity of Approach. Art. 50 125

crease of less than one-tenth of one percent. In general the

increase in discharge due to velocity of approach is expressed,

when a/A is not greater than 1/5, by \ c?a(a/A)
2
^/2gh.

A common case is that where the vessel or tank is of large

horizontal and small vertical cross-section, and where the water

approaches the orifice with a horizontal velocity, as in a canal

or conduit. Here let A be the area of the vertical cross-section

of the vessel, a the area of the orifice, and h the head on its center.

Then, if the head // be large compared with the depth of the orifice,

the same reasoning applies as in Art. 24, the theoretic velocity

is given by (24)! and the actual discharge by (50)2 .

When the head h is not large, let hi and /^ be the heads on the

upper and lower edges of the orifice, which is taken as rectangular

and of the width b. Let v be the

velocity of approach, which is re-

garded as uniform over the area A .

Then by the same reasoning as

that in Art. 24, the theoretic ve-

locity in the plane of the orifice

at the depth y below the water
i i 1 T72 >

Fie- 50 -

level is given by V* = 2gy + IT.

The theoretic discharge through an elementary strip of the

length b and the depth Sy now is

and, by integration between the limits h^ and hi, the total theoretic

discharge is found. If v-/2g be replaced by h Q ,
the head which

would cause the velocity v, the theoretic discharge is

Q= lb V^g [(fc + Ao^-CAi + Ao)*] (50) i

and the actual discharge q is found by multiplying this by a

coefficient of discharge. When there is no velocity of approach,

the formula reduces to that found in Art. 49 for this case.

Prob. 50a. When n is a small quantity compared with unity, show

that (i + n)^ = i + j n, and that i / ( i + n )
= i - M. Deduce formula

(50)3 from (50)2 .



126 Chap. 5. Flow of Water through Orifices

Prob. 506. In the case of horizontal approach, as seen in Fig. 50, com-

pute the discharge when b = 4 feet, A2
= 0.8 feet, kt

=
o, v =

2.5 feet per

second, and c = 0.6.

ART. 51. SUBMERGED ORIFICES

It is shown in Art. 23 that the effective head h which causes

the flow from a submerged orifice is the difference in level be-

tween the two water surfaces. The discharge from such an orifice,

its inner edge being a sharp definite one, as in Fig. 43a, has been

found by experiment to be slightly less than when the flow oc-

curs freely into the air, and hence the values of the coefficients

of discharge are slightly smaller than those given in Tables 47<z,

47b, 48, 49. For large orifices and large heads the difference is very

small, and for orifices one inch square under six inches head it is

about 2 percent. In all cases of submerged orifices the discharge

is to be found from q
= ca ^/2gh.

Table 51 gives values of the coefficient of discharge for sub-

merged orifices as determined from experiments made by Hamil-

ton Smith in 1884. The depth of submergence of the orifices

varied from 0.57 to 0.73 foot. As a mean value of the coefficient

of discharge for standard submerged orifices 0.6 is frequently

used.

TABLE 51. COEFFICIENTS FOR SUBMERGED ORIFICES
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\
D F C

Fig. 51.

B

same, as may be proved from Fig. 51, where the triangles . 1( I)

and BCE represent the distribution of pressure on AC and BC
when the orifice is closed (Art. 17). Mak-

ing CF equal to CE and drawing BF, the

unit-pressure on BC is seen to have the

constant value DF. Now when the orifice

is opened, the velocity at any point de-

pends on the unit-pressure there acting

as seen by (23) i, and accordingly the the-

oretic velocity is uniform over the section.

For this reason the coefficients of discharge probably vary less

with the head than for the previous cases.

Submerged orifices are used for canal-locks, tide-gates, filter-

beds, for the discharge of waste water through dams, and for the

admission of water from a canal to a power-plant. The inner

edges of such orifices are usually rounded, and the coefficient of

discharge may then be higher than 0.9 (Art. 53).

Prob. 51. An orifice one inch square in a gate, such as shown in Fig. 19a,

is 4.1 feet below the higher water level and 3.1 feet below the lower level.

Compute the discharge in cubic feet per second, and also in gallons per minute.

ART. 52. SUPPRESSION OF THE CONTRACTION

When a vertical orifice has its lower edge at the bottom of

the reservoir, as shown at A in Fig. 52, the particles of water

flowing through its lower portion move in

lines nearly perpendicular to the plane of the

orifice, or the contraction of the jet does not

form on the lower side. This is called a case

of suppressed or incomplete contraction. The

same thing occurs, but in a lesser degree, whenFig. 52.

the lower edge of the orifice is near the bottom, as shown at B.

In like manner, if an orifice be placed so that one of its vertical

edges is at or near a side of the reservoir, as at C, the contrac-

tion of the jet is suppressed upon one side, and if it be placed

at the lower corner of the reservoir suppression occurs both upon
one side and the lower part of the jet.
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The effect of suppressing the contraction is, of course, to in-

crease the cross-section of the jet at the place where full contrac-

tion would otherwise occur, and it is found by experiment

that the discharge is likewise increased. Experiments also show

that more or less suppression of the contraction will occur unless

each edge of the orifice is at a distance at least equal to three times

its least diameter from the sides or bottom of the reservoir.

The experiments of LesbVos and Bidone furnish the means

of estimating the increased discharge caused by suppression of the

contraction. They indicate that for square orifices with con-

traction suppressed on one side the coefficient of discharge is

increased about 3.5 percent, and with contraction suppressed
on two sides about 7.5 percent. For a rectangular orifice

with the contraction suppressed on the bottom edge the per-

centages are larger, being about 6 or 7 percent when the length
of the rectangle is four times its height, and from 8 to 1 2 percent
when the length is twenty times the height. The percentage
of increase, moreover, varies with the head, the lowest heads

giving the lowest percentages.

It is apparent that suppression of the contraction should be avoided

if accurate results are desired. The experiments from which the above

conclusions are deduced were made upon small orifices with heads

less than 6 feet, and it is not known how they will apply to large ori-

fices under high heads. For a rectangular orifice of length about

three times its height, with contraction suppressed on the ends and

bottom, the coefficient of discharge is probably about 0.75.

Prob. 52. Compute the probable discharge from a vertical orifice one
foot square when the head on its upper edge is 4 feet, the contraction being
suppressed on the lower edge. Compute the discharge for the same data
when contraction is suppressed on all sides.

ART. 53. ORIFICES WITH ROUNDED EDGES

When the inner edge of the orifice is made rounded, as shown
in Fig. 53, the contraction of the jet is modified, and the dis-

charge is increased. With a slight degree of rounding, as at

A , a partial contraction occurs
;
but with a more complete round-

ing, as at C, the particles of water issue perpendicular to the plane
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of the orifice and there is no contrac-

tion of the jet. If a be the area of

the least cross-section of the orifice,

and a that of the jet, the coefficient

of contraction as denned in Art. 44 is

c' = a'/a (53)

For a standard orifice with sharp inner

edges (Art. 43) the mean value of c' is 0.62, but for an orifice

with rounded edges c' may have any value between 0.62 and i.o,

depending upon the degree of rounding.

The coefficient of discharge c for standard orifices has a mean

value of about 0.6 1
;
this is increased with rounded edges and may

have any value between 0.6 1 and i.o. A rounded interior edge

in an orifice is therefore always a source of error when the object

of the orifice is the measurement of the discharge. If a contract

provides that water shall be gaged by standard orifices, care should

always be taken that the interior edges do not become rounded

either by accident or by design.

Prob. 53. When an orifice with rounded edges has a coefficient of

velocity of 0.88 and a coefficient of discharge of 0.75, find the coefficient of

contraction of the jet.

ART. 54. WATER MEASUREMENT BY ORIFICES

In order that water may be accurately measured by the use

of orifices many precautions must be taken, some of which have

already been noted, but may here be briefly recapitulated. The

area of the orifice should be small compared with the size of the

reservoir in order that velocity of approach may not exist, or

if this cannot be avoided, it should be taken into account by for-

mula (50)^ The inner edge of the orifice must have a definite

right-angled corner, and its dimensions are to be accurately

determined. If the orifice be in wood, care should be taken that

the inner surface be smooth, and that it be kept free from the

slime which often accompanies the flow of water, even when appar-

ently clear. That no suppression of the contraction may occur,
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the edges of the orifice should not be nearer than three times its

least dimension to a side of the reservoir.

Orifices under very low heads should be avoided, because

slight variations in the head produce relatively large errors, and

also because the coefficients of discharge vary more rapidly

and are probably not so well determined as for cases where the

head is greater than four times the depth. If the head be very

low on an orifice, vortices will form which render any estimation

of the discharge unreliable.

The measurement of the head, if required with precision,

must be made with the hook gage described in Art. 35. For

heads greater than two or three feet the readings of an ordinary

glass gage placed upon the outside of the reservoir will usually

prove sufficient, as this can be read to hundredths of a foot with

accuracy. An error of o.oi foot when the head is 3.00 feet

produces an error in the computed discharge of less than two-

tenths of one per cent; for, the discharges being proportional

to the square roots of the heads, the square root of 3.01 divided

by the square root of 3.00 equals 1:0017. For the rude measure-

ments in connection with the miner's inch a common foot-rule

will usually suffice.

The effect of temperature upon the discharge remains to

be noticed
;
this is only appreciable with small orifices and under

low heads and hence such orifices and heads are not desirable

in precise measurements. Unwin found that the discharge was
diminished one percent by a rise of 144 in temperature; his

orifice was a circle 0.033 feet m diameter under heads ranging
from i.o to 1.5 feet. Hamilton Smith found that the discharge
was diminished one percent by a rise of 55 in temperature ;

his

orifice was a circle 0.02 feet in diameter under heads ranging
from 0.56 to 3. 2 feet.

The coefiicients given in the tables of this chapter may be supposed
liable to a probable error of about two units in the third decimal place :

thus a coefficient 0.615 should really be written 0.615 -002
5
that is,

the actual value is as likely to be between 0.613 and 0.617 as to be
outside of those limits. The probable error in computed discharges
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due to the coefficient is hence nearly one-half of one percent. To
this are added the errors due to inaccuracy of observation, so that it

is thought that the probable error of careful work with standard cir-

cular orifices is at least one percent. The computed discharges are

hence liable to error in the third significant figure, so that it is useless

to carry numerical results beyond three figures when based upon tabu-

lar coefficients. As a precise method of measuring small quantities

of water, standard orifices take a high rank when the observations are

conducted with care.

Prob. 54. If e is a small error in measuring the head h, show that the

error in the computed discharge q due to this cause is qe/2h.

ART. 55. THE MINER 's INCH

The miner's inch may be roughly defined to be the quantity

of water which will flow from a vertical standard orifice one inch

square, when the head on the center of the orifice is 6j inches.

From Table 48 the coefficient of discharge is seen to be about

0.623 and accordingly the actual discharge from the orifice in

cubic feet per second is q
= ifa X 0.623 X 8.02 V6.5/I2 = 0.0255

and the discharge in one minute is 60X0.255 =
1.53 cubic

feet. The mean value of one miner's inch is therefore about

1.5 cubic feet per minute.

The actual value of the miner's inch, however, differs con-

siderably in different localities. Bowie states that in different

counties of California it ranges from 1.20 to 1.76 cubic feet per
minute.* The reason for these variations is due to the fact that

when water is bought for mining or irrigating purposes, a much

larger quantity than one miner's inch is required, and hence larger

orifices than one square inch are needed. Thus at Smartsville

a vertical orifice or module 4 inches deep and 250 inches long, with

a head of 7 inches above the top edge, is said to furnish 1000

miner's inches. Again, at Columbia Hill, a module 12 inches

deep and 12! inches wide, with a head of 6 inches above the upper

edge, is said to furnish 200 miner 's inches. In Montana the cus-

tomary method of measurement is through a vertical rectangle,

* Treatise on Hydraulic Mining (New York, 1885), p. 268.
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i inch deep, with a head on the center of the orifice of 4 inches,

and the number of miner's inches is said to be the same as the

number of linear inches in the rectangle; thus under the given

head an orifice i inch deep and 60 inches long would furnish

60 miner's inches. The discharge of this is said to be about

1.25 cubic feet per minute, or 75 cubic feet per hour.

The following are the values of the miner's inch in different

parts of the United States
;
in California and Montana it is es-

tablished by law that 40 miner's inches shall be the equivalent

of one cubic foot per second, and in' Colorado 38.4 miner's inches

is the equivalent. In other States and Territories there is no

legal value, but by common agreement 50 miner's inches is

the equivalent of one cubic foot per second in Arizona, Idaho,

Nevada, and Utah; this makes the miner's inch equal to 1.2

cubic feet per minute.

A module is an orifice which is used in selling water, and which

under a constant head is to furnish a given number of miner's

inches, or a given quantity per second. The size and proportions
of modules vary greatly in different localities, but in all cases the

important feature to be observed is that the head should be main-

tained nearly constant in order that the consumer may receive

the amount of water for which he bargains, and no more.

The simplest method of maintaining a constant head is by
placing the module in a chamber which is provided with a gate
that regulates the entrance of water from the main reservoir

or canal. This gate is raised or lowered by an inspector once
or twice a day so as to keep the surface of the water in the

chamber at a given mark. This plan is a costly one, on account
of the wages of the inspector, except in works where many modules
are used and where a daily inspection is necessary in any event,
and it is not well adapted to cases where there are frequent and
considerable fluctuations in the water surface of the feeding canal.

Numerous methods have been devised to secure a constant head

by automatic appliances; for instance, the gate which admits water
into the chamber may be made to rise and fall by means of a float

upon the surface
;
the module itself may be made to decrease in size
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when the water rises, and to increase when it falls, by a gate or by
a tapering plug which moves in and out and whose motion is con-

trolled by a float. In another variety the head on an orifice is kept

constant by placing it in the side of a vessel which is movable and

whose vertical movement is proportional to the rise or fall of the water

in the feeding channel or reservoir. These self-acting contrivances,

however, are liable to get out of order, and require to be inspected

more or less frequently.* Another method is to have the water flow

over the crest of a weir as soon as it reaches a certain height.t

The use of the miner's inch, or of a module, as a standard for sell-

ing water, is awkward and confusing, and for the sake of uniformity

it is greatly to be desired that water should always be bought and sold

by the cubic foot per second. Only in this way can comparisons readily

be made, and the consumer be sure of obtaining exact value for his

money.

Prob. 55. When a miner's inch is 1.57 cubic feet per minute, how many
miner's inches will be furnished by a module 2 inches deep and 50 inches long

with a head of 6 inches above the upper edge ?

ART. 56. Loss OF ENERGY OR HEAD

A jet of water flowing from an orifice possesses by virtue of

its velocity a certain kinetic energy, which is always less than the

theoretic potential energy due to the head (Art. 26). Let h be

the head and W the weight of water discharged per second, then

the theoretic energy per second or the power of the jet, is

K = Wh

Let v be the actual velocity of the water at the contracted section

of the jet ;
then the actual energy per second of the water as it

passes that section is
k = W- v

z
/2g

Now let Ci be the coefficient of velocity (Art. 45) ;
then

v
2 = c? -

2gh

and accordingly the actual energy of the jet per second is

k =

* For descriptions of several see Engineering News, Dec. 17, 1008.

t Foote, Transactions American Society Civil Engineers, 1887, vol. 16, p. 134.
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The efficiency of the jet, or the ratio of the actual to the theoretic

energy, now is
e = k/K = c? (56)

which is a number always less than unity.

For the standard orifice the mean value of GI is 0.98, and hence

a mean value of Ci
2
is 0.96. The actual energy of a jet from such

an orifice is hence about 96 percent of the theoretic energy, and

the loss of energy is about 4 percent. This loss is due to the

frictional resistance of the edges of the orifice, whereby the energy

of pressure or velocity is changed into heat.

In the plane of the standard orifice the velocity is slower than

at the contracted section since the area there is greater. If

Vi be this velocity, a the area of the orifice, and a that of the jet

at the contracted section, it is clear that avi
= a'v or Vi

=
c'v,

where c' is the coefficient of contraction 0.62. The kinetic energy
in the plane of the orifice is W -

Vi*/2g, or 0.37 Wtf/2 g, or 0.37 Wh.

Thus, in the plane of the orifice 4 percent of the theoretic energy
is lost overcoming friction, 37 percent is in the form of kinetic

energy, and the remaining 59 percent exists in the form of

pressure energy. This 59 percent is transformed into kinetic

energy when the water has reached the contracted section.

In hydraulics the terms "energy" and "head" are often used

as synonymous, although really energy is proportional to head.

Thus the pressure-head that causes the flow is h and the velocity-
head of the issuing jet is v

2
/2g, and these are proportional to the

theoretic and effective energies. The lost head h' is the differ-

ence of these, or 2

and this applies not only to an orifice but to any tube or pipe.

Inserting for tf its value, this becomes

which gives the lost head in terms of the total head. Inserting
for h its value in terms of v reduces this to

* -(V')-\Ci
2

J 2g
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which gives the lost head in terms of the velocity-head. Thus,

for an orifice whose coefficient of velocity is 0.97 the lost head

//' is 0.060 // or 0.063 v2/2g. For the standard orifice the lost

head //' is 0.040 h or 0.041 i?/2g. For the standard orifice //' can

also be expressed as o.n fli

2
/2g, where ^ is the velocity in the

plane of the orifice.

Prob. 56. What is the loss of head in an orifice whose coefficient of

velocity is unity ?

ART. 57. DISCHARGE UNDER A DROPPING HEAD

If a vessel or reservoir receives no inflow of water while an

orifice is open, the head drops and the discharge decreases in

each successive second. Let H be the head on the orifice at a

certain instant, and h the head / seconds later
;
let A be the area

of the uniform horizontal cross-section of the vessel, and a the

area of the orifice. Then, the theoretic time / is given by the

second formula in Art. 32. To determine the actual time

the coefficient of discharge must be introduced. Referring to

the demonstration, it is seen that a'\/2gy'&t is the theoretic dis-

charge in the time &t
;
hence the actual discharge is c - a V2yS/,

and accordingly a in the above-mentioned formula is to be re-

placed by ca
t
or A

is the practical formula for the time in which the water level

drops from H to h. In using this formula c is to be taken from

the tables of this chapter, an average value being selected cor-

responding to the average head.

Experiments have been made to determine the value of c by
the help of this formula; the liquid being allowed to flow, A,

a, 77, h, and / being observed, whence c is computed. In this

way c for mercury has been found to be about 0.62.* Only ap-

proximate mean values can be found in this manner, since c

varies with the head, particularly for small orifices (Art. 47).

For a large orifice the time of descent is usually so small that it

*
Downing 's Elements of Practical Hydraulics (London, 1875), p. 187.
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cannot be noted with precision, and the friction of the liquid on

the sides of the vessel may also introduce an element of uncer-

tainty. Further, when h is small, a vortex forms which renders

the formula unreliable. This experiment has therefore little

value except as illustrating and confirming the truth of the theo-

retic formulas.

The discharge in one second when the head is H at the be-

ginning of that second is found as follows : the above equation

may be written in the form

VH - tea V2g/2A = -Vh

By squaring both members, transposing, and multiplying by

A, this may be reduced to

A(H-ti) = tea V2g ( V# - tea \/2g/4 A )

But the first member of this equation is the quantity discharged

in / seconds
;
therefore the discharge in the first second is

q
= ca ~\2g ca

If A = oo
,
this becomes ca ^/2gh, which should be the case, for

then H would remain constant. At the end of the first second

the water level has fallen the amount q/A, so that the head at

the beginning of the second second isH q/A .

For example, let an orifice one foot square in a reservoir

of 10 square feet section be under a head of 9 feet, and c = 0.602.

Then the discharge in one second is 13.9 cubic feet, and the head

drops to 7.61 feet. The discharge in the next second is 12.7

cubic feet, and the head drops to 6.34 feet.

Prob. 57. Find the time required to discharge 480 gallons of water from

an orifice 2 inches in diameter at 8 feet below the water level when the cross-

section of the tank is 4 X 4 feet.

ART. 58. EMPTYING AND FILLING A CANAL LOCK

A canal lock is emptied by opening one or more orifices in the

lower gates. Let a be their area and H the head of water on
them when the lock is full

;
let A be the area of the horizontal

cross-section of the lock. Then in the first formula of the last
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article // = o, and the time of emptying the lock is

/ = 2.4 \ // <-</ \ (58)

If the discharge be free into the air, // i the distance from the

center of the orifice to the level of the water in the lock when

filled
;
but if, as is usually the case, the orifices be below the level

of the water in the tail bay, H is the difference in height between

the two water levels. The tail bay is regarded as so large com-

pared with the lock that its water level remains constant during

the time of emptying.

For example, let it be required to find the time of emptying
a canal lock 80 feet long and 20 feet wide through two orifices

each of 4 square feet area, the head upon which is 16 feet when the

lock is filled. Using for c the value 0.6 for orifices with square

inner edges, the formula gives

2 X 80 X 20 X 4

0.6X8X8.02 333 seconds = 5! minutes

If, however, the circumstances be such that c is 0.8, the time is

about 250 seconds, or 4^ minutes. It is therefore seen that it

is important to arrange the orifices of discharge in canal locks

with rounded inner edges.

The filling of the lock is the reverse operation. Here the water

in the head bay remains at a constant level, and the discharge

through the orifices in the

upper gates decreases with

the rising head in the lock.

Let H be the effective head

on the orifices when the

lock is empty, and y the

effective head at any time

/ after the beginning of the

discharge. The area of the

section of the lock being

A, the quantity A By is discharged in the time S/, and this is equal

to ca ^/zgy /, if a be the area of the orifices and c the coefficient

of discharge. Hence the same expression as (58) results, and the

Fig. 58.
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times of filling and emptying a lock are equal if the orifices are

of the same dimensions and under the same heads. The area

required for the orifices may be found for any case from (58)

when A, H, /, and c are given.

Prob. 58. A lock 90 feet long and 20 feet wide, with a lift of 1 2 feet,

contains a boat weighing 500 net tons. When the lock is emptied in order

to lower the boat, how much water flows from the lower orifices ? If the

cross-section of these orifices is 12.3 square feet and c =
0.7, what is the time

of emptying ?

ART. 59. COMPUTATIONS IN METRIC MEASURES

Most of the formulas of this chapter are rational and may be used

in all systems of measures. The coefficients of contraction, velocity,

and discharge are abstract numbers, which are the same in all sys-

tems, like the constants of mathematics. In the metric system the

area a is to be taken in square meters, the head h in meters, V2g
as 4.427, and then the discharge q will be in cubic meters per second.

(Art. 47) For standard circular vertical orifices the formulas

(47)i and (47) 2 apply to the metric system if 8.02 be replaced by 4.427.

In using these the coefficient c may be taken from Table 59a which

has been adapted to metric arguments from Table 47. For example, if

TABLE 59a. COEFFICIENTS FOR CIRCULAR VERTICAL ORIFICES

Arguments in Metric Measures

Head
h

in Meters
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the diameter of the orifice is 2.5 centimeters and the head on its center

is 0.6 meters, interpolation in the table gives the value of c as 0.606.

(Art. 48) For standard square vertical orifices the formulas

(48)i and (48)2 are changed to the metric system by substituting 4.427

for 8.02 and 2.951 for 5.347. Table 596 gives values of the coefficient

c for arguments in metric measures.

TABLE 596. COEFFICIENTS FOR SQUARE VERTICAL ORIFICES

Arguments in Metric Measures

Head
h

in Meters
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.

a horizontal plane 1.41 meters below the vertical orifice, which was under a

head of 7.19 meters. Compute the coefficient of velocity.

Prob. 59&. An orifice 3 centimeters square was under a constant head

of 4 meters, and during 230 seconds the^jet flowed into a tank which was found

to contain 1122 liters. Show that the coefficient of discharge was 0.612.

Prob. 59c. Find from the table the coefficient of discharge for a standard

circular orifice 2.5 centimeters in diameter under a head of 2.5 meters.

Prob. 59</. Compute the discharge through a standard orifice 7.5

centimeters square under a head of 8 meters.

Prob. 59e. Compute the time required to empty a canal lock 7 meters

wide and 32 meters long through an orifice of 0.9 square meters area, the head

on the center of the orifice being 5.1 meters when the lock is filled.
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CHAPTER 6

FLOW OF WATER OVER WEIRS

ART. 60. STANDARD WEIRS

A weir is a notch in the top of the vertical side of a vessel or

reservoir through which water flows. The notch is generally

rectangular, and the word "weir" will be used to designate a

rectangular notch unless otherwise specified, the lower edge of

the rectangle being truly horizontal, and its sides vertical. The
lower edge of the rectangle is called the

"
crest" of the weir. In

Fig. 60a. Fig. 606.

Fig. 60a is show n the outline of the most usual form, where the

vertical edges of the notch are sufficiently removed from the

sides of the reservoir or feeding canal, so that the sides of the

stream may be fully contracted
;

this is called a weir with end

contractions. In the form of Fig. 606 the edges of the notch are

coincident with the sides of the feeding canal, so that the filaments

of water along the sides pass over without being deflected from

the vertical planes in which they move ;
this is called a weir with-

out end contractions, or with end contractions suppressed. Both
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kinds of weirs are extensively used for the measurement of water

in engineering operations.

It is necessary in order to make accurate measurements of

discharge by a weir that the same precaution should be taken as

for orifices (Art. 54), namely, that the inner edgfe of the notch

shall be a definite angular corner so that the

water in flowing out may touch the crest

only in a line, thus insuring complete con-

traction, as in Fig. 61. In precise observa-

tions a thin metal plate will be used for a

Fig. 60c.
crest, while in common work it may be

sufficient to have the crest formed by a plank of smooth hard

wood with its inner corner cut to a sharp right angle and its outer

edge beveled. The vertical edges of the weir should be made in

the same manner for weirs with end contractions, while for those

without end contractions the sides of the feeding canal should be

smooth and be prolonged a slight distance beyond the crest. It

is also necessary to observe the same precautions as for orifices

to prevent the suppression of the contraction (Art. 52), namely,
that the distance from the crest of the weir to the bottom of the

feeding canal, or reservoir, should be greater than three times the

head of water on the crest. For a weir with end contractions a

similar distance should exist between the vertical edges of the

weir and the sides of the feeding canal. A standard weir is one

in which these arrangements have been carefully carried out.

The head of water H upon the crest of a weir is usually much
less than the breadth of the crest b. The value of H should not

be less than o.i feet, and it should not exceed 4.5 feet in order

to keep within the range of experiments on the standard weir.

The least value of b in practice is about 0.5 feet, and it does not

often exceed 20 feet. Weirs are extensively used for measuring
the discharge of small streams, and for determining the quantity
of water supplied to hydraulic motors

;
the practical importance

of the subject is so great that numerous experiments have been

made to ascertain the laws of flow, and the coefficients of discharge.

Since the head on the crest of a weir is small, it must be deter-
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mined with precision in order to avoid error in the computed dis-

charge. The hook gage illustrated in Art. 35 is generally used

for accurate work in connection with hydraulic motors, and the

simpler form, consisting of a hook set into a leveling rod, is usually

of sufficient precision for many cases. For rough gagings of

streams the heads may be determined by setting a post a few feet

upstream from the weir and on the same level as the crest, and

measuring the depth of the water over the top of the post by a

scale graduated to tenths and hundredths of a foot, the thou-

sandths being either estimated or omitted entirely.

The head H on the crest of the weir is in all cases to be meas-

ured several feet upstream from the crest, as indicated in Fig.

60c. This is necessary because of the curve taken by the surface

of the water in approaching the weir. The distance to which

this curve extends back from the crest of the weir depends upon

many circumstances (Art. 70), but it is generally considered that

perfectly level water will be found at 2 or 3 feet back of the crest

for small weirs, and at 6 or 8 feet for very large weirs. It is de-

sirable that the hook should be placed at least one foot from the

sides of the feeding canal, if possible. As this is apt to render the

position of the observer uncomfortable, some experimenters have

placed the hook in a pail a few feet away from the canal, the water

being led to the pail by a pipe which joins the feeding canal sev-

eral feet back from the crest, and the water should enter this pipe,

not at its end, but through a number of holes drilled at inter-

vals along its circumference. Piezometers (Art. 36) consisting

of a glass tube and scale are also sometimes used for large heads,

the water being led to the tube by such a pipe. A rough method

of measuring the head is to hold a common foot rule on a post set

with its top on the same level as the crest and upstream from it.

In a case where it is desired to obtain the highest degree of

accuracy care should be taken to reproduce as nearly as possible

the conditions which obtained under the experiments from which

the coefficients to be used were obtained. This is particularly

true of the manner in which the head is to be measured. Thus

Poncelet and Lesbros, whose experimental results have been



144 Chap. 6. Flow of Water over Weirs

recomputed by Hamilton Smith, measured the head in a reservoir

1 1 .48 feet upstream from the weir. Francis *
in some of his

experiments measured the head with a hook gage in a wooden

stilling box, having a hole one inch in diameter in its bottom which

ywas placed at a level of about four inches below the crest of the

weir and about 6 feet upstream from it. Fteley and Stearns f

measured the head with a hook gage in a pail placed below the

weir, the pail being connected to the channel above the weir at

a point 6 feet upstream from the crest. Bazin J in his work on

standard thin-edged weirs measured the head in pits 16.40 feet

upstream from the weir. One pit was placed on each side of the

channel of approach and connected with it through an opening

4 inches in diameter, the opening being exactly flush and at right

angles to the channel.

A valuable discussion by Horton, in which he tabulates the

results of many experiments made on weirs up to 1907, is strongly
recommended for reference.

In cases where the flow of water to be measured is constant it is

best that a number of observations of the head on the measuring weir

should be taken and their mean used in computing the quantity.
In most practical cases, however, the flow is constantly fluctuating,

and, in order that the total quantity may be accurately determined,
observations at frequent intervals must be taken. It may be best

in some cases, for convenience of where a high degree of refinement
is required, to install an instrument such as that described in Art. 34
for automatically and continuously recording the head. Where such
a record has been obtained, it will not do to simply average the heads
and use the resulting figure in the formula for the discharge. Since
the discharges vary with the three-halves power of the head, it is

necessary to compute them for various instants which are so selected

that the computed discharges can be fairly averaged before multiply-
ing by the total time between the beginning and end of the tests in

order to obtain the total quantity which has passed over the weir.
No definite rules can be laid down for this procedure, but every case

*
Lowell Hydraulic Experiments (4th edition, New York, 1883).
Transactions American Society of Civil Engineers, vol. 12.

t Translated in Proceedings of Engineers Club, Philadelphia, vols. 7, 9, 10.
Water Supply and Irrigation Paper No. 200, U. S. Geological Survey.
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should be studied and a plan be adopted which will give the results

desired with the required degree of accuracy.

Prob. 60. The trough of a weir, several feet back from the crest, is

6 feet wide, and the depth of water in it is 1.96 feet. What is the mean

velocity in this trough when the flow over the weir is 4.24 cubic feet per

second ?

ART. 61. FORMULAS FOR DISCHARGE

Referring to the demonstration of Art. 48 it is seen that a

rectangular orifice becomes a weir when the head on its top is

zero. Let b be the breadth of the notch, commonly called the

length of the crest, and H the head of water on the crest. Then

replacing hi by o and h^ by H, the theoretic discharge per second is

<2
= fV^-6//

!
(61),

The head H is not the depth measured in the vertical plane of the

crest, for since the deduction of the formula assumes nothing re-

garding the fall due to the surface curve, and regards the velocity

at any point vertically over the crest as due to the head

upon that point below the free water surface, it seems that H
should be measured with reference to that surface, as is actually

done by the hook gage. The above formula then gives the

theoretic discharge per second, provided that there be no velocity

at the point where // is measured, which can only be the case

when the area of the weir opening is very small compared to that

of the cross-section of the feeding canal. This condition would

be fulfilled for a rectangular notch at the side of a large pond.

When there is an appreciable velocity of approach of the water

at the point where // is measured by the hook gage, the above

formula must be modified. Let v be

the mean velocity in the feeding canal

at this section; this velocity may be

regarded as due to a fall, h, from the

surface of still water at some distance

upstream from the hook, as shown in

Fig. 61. Now the true head on the crest of the weir is // + /r,

since this would have been the reading of the hook gage had it

been placed where the water had no velocity. Hence the theo-
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retic discharge per second over the weir is

in which H is read by the hook and h is to be determined from

the mean velocity v.

The actual discharge is always less than the theoretic dis-

charge, due to the contraction of the stream and the resistances

of the edges of the weir. To take account of these a coefficient

is applied to the theoretic formulas in the same manner as for

orifices; these coefficients being determined by experiment, the

formulas may then be used for computing the actual discharge.

It was also proposed by Hamilton Smith to modify the head /z,

owing to the fact that the velocity of approach is not constant

throughout the section, but greater near the surface than near

the bottom, as in conduits and streams (Art. 125). Accordingly

the following is an expression for the actual discharge:

in which c is the coefficient of discharge whose value is always

less than unity, and n is a number which lies between i.o and 1.5.

For the English system of measures a mean value of V2g is 8.020,

but a more precise value can be found from (6)1 for any locality.

The above formulas are not in all respects perfectly satisfactory,

and indeed many others have been proposed, one of these being de-

rived from (50) 4 by making h =
h, h2

= H, and hi
= o. The actual

discharge differs, however, so much from the theoretical that the

final dependence must be upon the coefficients deduced from experi-

ment, and hence any fairly reasonable formula may be used within

the limits for which its coefficients have been established. In spite

of the objections which may be raised against all forms of formulas,

the fact remains that the measurement of water by weirs is one of the

most convenient methods, and for many conditions the most precise

method. If the quantity is so small as to pass through a circular orifice

less than one foot in diameter, then the orifice is more precise

than the weir. For the continuous measurement of water passing

through large pipes the Venturi meter gives the best results. With

proper precautions the probable error in measurements of discharge

by weirs should be less than two or three percent.
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Prob. 61. Show by using formula (61)i that an error of about one hill'

of one percent results in the computed discharge if an error of o.ooi feet

is made in reading the head when // = 0.3 feet.

ART. 62. VELOCITY OF APPROACH

The head // which produces the velocity v is expressed by

\', and in the case of a weir, the velocity of approach v is due

to a fall from the height h
;
thus the velocity-head is

//
=

V*/2g
=

O.OI555 V
2

and when v is known, // can be computed. One way of finding

: is to observe the time of passage of a float through a given dis-

tance; but this is not a precise method. The usual method is

to compute v from an approximate value of the discharge, which

is itself first computed by regarding i>, and hence h, as zero. This

determination is rendered possible by the fact that v i usually

small, and hence that // is quite small as compared with H.

Let B be the breadth of the cross-section of the feeding canal

at the place where the readings of the hook are taken, and let

G be its depth below the crest (Fig. 61). The area of that cross-

section then is
A =B(G + H)

The mean velocity in this section now is

in which the discharge q
f

is found from the formula

This value of q
f

is an approximation to the actual discharge;

from it v is found, and then //, after which the discharge q can be

computed. If thought necessary, h may be recomputed by using

q instead of q ;
but this will rarely be necessary.

For example, a small weir with end contractions, which was

used in the hydraulic laboratory of Lehigh University prior to

1896, had B =
7.82 feet and G =

2.5 feet. The length of the

weir b was adjustable according to the quantity of water deliv-

ered by the stream. On April 10, i&88, the value of b was

1.330 feet, and values of H ranged from 0.429 to 0.388 feet.
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It is required to find the velocity v and the head h, when H =

0.429 feet. Here the coefficient c is 0.602 (Table 63); hence

the approximate discharge per second is

q
f = 0.602 X f X 8.02 X 1.33 X 0.429

1

or q
f =

1.203 cubic feet per second.

The mean velocity of approach then is

=
0.053 feet per second,

(2.5 + 0.4)7.82

and the head h producing this velocity is

h = 0.01555 X o.o53
2 = 0.00004 feet,

which is too small to be regarded, since the hook gage used

determined the heads only to thousandths of a foot.

The head h may be directly expressed in terms of the dis-

charge by substituting for v its value q/A ;
thus

A = 0.01

and when q is approximately known, this expression will be found

a very convenient one for computing the value of the head cor-

responding to the velocity of approach.

The head h may be directly computed, when it is small com-

pared with H, from the formula

(62) '

To deduce this, let the above values of A and q' be inserted in

the equation v = q'/A, and then v be placed in h = v2/2g. This

is a convenient expression for logarithmic computation.

With a weir opening of given size under a given head H, the velocity

of approach is less the greater the area of the section of the feeding

canal, and it is desirable in building a weir to make this area large

so that the velocity v may be small. For large weirs, and particularly

for those without end contractions, v is sometimes as large as one foot

per second, giving h = 0.0155 feet
,
and these should be regarded as

the highest values allowable if precision of measurement is required.
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Prob. (\'2. I'trley and Stearns' large suppressed weir had thr following

dimensions : b - B = 18.996 feet, G = 6.55 feet, and the greatest nua>ur|

head was 1.6038 feet. Taking c = 0.622, compute the velocity of appra< li

and its velocity-head.

ART. 63. WEIRS WITH END CONTRACTIONS

Let b be the breadth of the notch or length of the weir. //

the head above the crest measured by Hie hook gage, and c an

experimental coefficient. Then, when there is no velocity of

approach, the discharge per second is

q
= C'$V^.bH* (63)!

But when the mean velocity of approach at the section where

the hook is placed is v, let h be the head which would produce

this velocity as computed by (62) 2 . Then the discharge is

*)
!

(68),

The quantity H -f- 1.4 h is called the effective head on the crest,

and, as shown in the last article, the velocity-head // is usually

small compared with the head H.

Table 63 contains values of the coefficient of discharge c as

deduced by Hamilton Smith, from a discussion of the experi-

ments made by Lesbros, Francis, Fteley and Stearns, and others

on standard weirs.* In these experiments q was determined by
actual measurement in a tank of large size, and the other quan-
tities being observed, the coefficient c was computed. Values of

c for different lengths of weir and for different heads were thus

obtained, and after plotting them mean curves were drawn from

which immediate values were taken. The heads in the first

column are the effective heads H -+- 1.4 h; but as h is small, little

error can result in using H as the argument with which to enter

the table in selecting a coefficient.

It is seen from the table that the coefficient c increases with

the length of the weir, which is due to the fact that the end con-

tractions are independent of the length. The coefficient also

* Hamilton Smith, Hydraulics, 1884, p. 132.
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increases as the head on the crest diminishes. The table also

shows that the greatest variation in the coefficients occurs under

small heads, which are hence to be avoided in order to secure

accurate measurements of discharge.

TABLE 63. COEFFICIENTS FOR CONTRACTED WEIRS

Effective

Head
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If the width of the feeding canal be 7 feet, and its depth below

the crest be 1.5 feet, the velocity-head is

h 0.01555 f 4^
_J =0.00134 feet.

The effective head now becomes H+ 1.4 h = 0.459 ^eet
>
an<^ tne

discharge per second over the weir is

q
= 0.612 X f X 8.02 X 4 X 0.459*

= 4-7 cubic feet.

It is to be observed that the reliability of these computed dis-

charges depends upon the precision of the observed quantities

and upon the coefficient c\ this is probably liable to an error of

one or two units in the third decimal place, which is equivalent

to a probable error of about three-tenths of one per cent. On
the whole, regarding the inaccuracies of observation, a probable

error of one per cent should at least be inferred, so that the value

q
=

4.07 cubic feet per second should strictly be written q
= 4.07

0.04; that is, the discharge per second has 4.07 cubic feet for

its most probable value, and it is as likely to be between the values

4.03 and 4.11 as to be outside of those limits.

When velocity of approach is considered, an excellent method

of computing the discharge is to expand the parenthesis of (63)2 in

a series and use only two terms of the expansion, thus

(63),

in which h/H is computed from the expression (2 cHb/$ (H + G) #)
2

,

where B is the breadth of the feeding canal and G is the distance of

the bottom of the canal below the level of the crest (Fig. 61). For

example, in the case of the last paragraph h/H is found from the

numerical data to be 0.00297, whence the quantity in the parenthesis

is 1.00624 and the discharge is 4.04 X 1.00624 = 4.07 cubic feet per

second. It is seen that this method requires less numerical work

than that of the one explained above.

In very precise work the value of the acceleration g should be

computed from formula (6)! for the particular latitude and elevation

above sea level where the weir is located.
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Prob. 63. A weir in north latitude 40 24' and 395 feet above sea level

has a length of 2.5 feet. Compute the discharges over it, the feeding canal

having the width 6 feet and the depth below crest 1.6 feet, when the heads

on the crest are 0.314, 0.315, and 0.316 feet.

ART. 64. WEIRS WITHOUT END CONTRACTIONS

For weirs without end contractions, or suppressed weirs as

they are often called, when there is no velocity of approach,

the discharge per second is

q
= c-l V2g ft//

1
(64)!

and when there is velocity of approach,

j- e -iV^-6(ff+iJ*)* (64),

Here the notation is the same as in the last article, and c is to be

taken from Table 64, which gives the coefficients of discharge

as deduced by Smith, in 1888.

TABLE 64. COEFFICIENTS FOR SUPPRESSED WEIRS

Effective

Head
in Feet
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with the length of the weir, while those for contracted \\viis

increase with the length. Their greatest variation occurs under

low heads, where they rapidly increase as the head diminishes.

It should be observed that these coefficients are not reliable for

lengths of weirs under 4 feet, owing to the few experiments which

have been made for short suppressed weirs. Hence, for small

quantities of water, weirs with end contractions should be built in

preference to suppressed weirs. For a weir of infinite length it

would be immaterial whether end contractions exist or not
;
hence

for such a case the coefficients lie between the values for the 19-

foot weir in Table 63 and those for the 19-foot weir in Table 64.

For a numerical illustration a suppressed weir having the same

dimensions as in the example of the last article will be used,

namely, b = 4 feet, G =
1.5 feet, and H =

0.457 ^eet - The co-

efficient is found from Table 64 to be 0.630 ;
then for no velocity

of approach the discharge per second is

q
=

0.630 X f X 8.02 X 4 X 0.457*
=

4.16 cubic feet.

Here the width B is also 4 feet
;
the head corresponding to the

velocity of approach then is by (62) i

= 0.0044 feet,
.967

and the effective head on the crest is

#+iJ// =
o.463 feet,

from which the discharge per second is

q
=

0.630 X f X 8.02 X 4 X 0.463*
= 4.24 cubic feet.

This shows that the velocity of approach exerts a greater in-

fluence upon the discharge than in the case of a weir with end

contractions.

When velocity of approach exists, a good method of computation
is to expand the parenthesis of (64)2 in a series and use only two terms

of the expansion thus,
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Cast Iroi

in which h/H can be computed from the equivalent expression

(2 cH/sCff + G)).
2 For example, from the above data the value of

h/H is 0.0095, whence the quantity in the parenthesis is 1.019 and

q = 4.16 X 1.019
= 4.24 cubic feet per second.

Prob. 64. Compute -the discharge per second over a weir without end

contractions when b = 0.995 feet
>
H = 0.7955 feet, G = 4.6 feet.

ART. 65. FRANCIS' FORMULAS

The formulas most extensively used for computing the flow

through weirs are those established by Francis in 1854* from the

// discussion of his numerous and

carefully conducted experiments,

but as they are stated without

tabular coefficients they are to be

regarded as giving only mean ap-

proximate results. The experi-

ments were made on large weirs,

most of them 10 feet long, and

with heads ranging from 0.4 to 1.6

feet, so that the formulas apply

particularly to such, rather than

to short weirs and low heads.

The shape and details of the crest

of the weirs are shown in Fig. 65

and the head was measured as described in Art. 60. The length

b and the headH being expressed in feet, the discharge per second,

when there is no velocity of approach, is, for weirs without end

contractions, or suppressed weirs,

q
=

3.33 bH* (65)!

and for weirs with two end contractions,

tf
=

3-33 (*- 0.2 ff)ff* (65),

Here it was considered by Francis that the effect of each end

contraction is to diminish the effective length of the weir by

Fig. 65.

* Lowell Hydraulic Experiments (4th edition, New York, 1883), p. 133.
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o.i H. In these formulas b and H must be taken in feet and q
will be found in cubic feet per second.

It is seen that the number 3.33 is c -

$^/2g, where c is the true

coefficient of discharge. The 88 experiments from which this

mean value was deduced show that the coefficient 3.33 actually

ranged from 3.30 to 3.36, so that by the use of the mean value

an error of one per cent in the computed discharge may occur.

When such an error is of no importance, the formula may be safely

used for weirs longer than 4 feet and heads greater than 0.4 feet.

Francis' method of correcting for velocity of approach differs

from that of Hamilton Smith, and is the same as that explained in

Art. 50. The head h causing the velocity of approach is computed
in the usual way, and then the formulas are written, for weirs without

end contractions,

and for weirs with end contractions,

? -3.330- 0.2

It is necessary that this method of introducing the velocity of ap-

proach should be strictly observed, since the mean number 3.33 was

deduced for this form of expression.

Prob. 65. What modification would you introduce in (65)>, if the

weir has one end with and the other end without contraction ?

ART. 66. OTHER WEIR FORMULAS

Fteley and Stearns* in the discussion of their experiments
on standard weirs proposed the formula

=
3.33 war* +0.007 & (66),

in which correction for end contraction is made as in the Francis

formula (Art. 65). They also proposed the following corrections

for velocity of approach for use in the above formula (66)1.

* Transactions American Society of Civil Engineers, vol. 12.
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the former of which is applicable to suppressed weirs and the

latter to weirs having end contractions, v being the mean velocity

of approach.

Among the most recent formulas for the flow over weirs

are those of Bazin* who experimented on sharp crests varying

in height from 0.79 to 3.72 feet and in length from 1.64 to 6.56

feet. From his discussion of his own results as well as those of

Fteley and Stearns, he deduced the following formulas for weirs

without end contractions

and **
(66) 2

The first of these formulas is applicable to cases where there is

no velocity of approach, while the second, by means of the co-

efficient m, corrects for any approach velocity which may exist.

The relations between m, p, and H are

m fJ-
=

0.405 +

where G is the height of the weir crest above the bottom of the

channel of approach. It is thus seen that m varies with the head

and also with the height of the weir above the bottom of the chan-

nel, both of which factors influence the velocity of approach.
On the other hand /* varies only with the head.

TABLE 66. BAZIN'S COEFFICIENTS m FOR SUPPRESSED WEIRS

Head
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In the above table are given some of the values of the co-

efficient m determined by Bazin's experiments for varying heads

and heights G of standard sharp-crested weirs. These coefficients

are applicable only to weirs having suppressed end contractions.

While these formulas give results agreeing well with many weir

gagings under ordinary heads, the expression for // cannot be re-

garded as a rational one since it becomes infinite when H is zero.

Prob. 6G. What will be the value of m in the case of a weir 2.50 feet

high when H is 1.25 feet?

ART. 67. SUBMERGED WEIRS

When the water on the downstream side of the weir is allowed

to rise higher than the level of the crest, the weir is said to be

submerged. In such cases an entire change of condition results,

and the preceding formulas are inapplicable. Let H be the head

above the crest measured upstream from the weir by the hook

gage in the usual manner, and let H' be the head above the crest

of the water downstream from the weir measured by a second

hook gage. If H be constant, the discharge is uninfluenced until

the lower water rises to the level of

the crest, provided that free access of

air is allowed beneath the descending

sheet of water. But as soon as it rises

slightly above the crest so that H' has

small values, the contraction is sup-

pressed and the discharge hence increased. As H' increases,

however, the discharge diminishes until it becomes zero when H'

equals H. Submerged weirs cannot be relied upon to give precise

measurements of discharge on account of the lack of experi-

mental knowledge regarding them, and should hence always be

avoided if possible.

The following method for estimating the discharge over sub-

merged weirs without end contractions is taken from the discussion

given by Herschel *
of the experiments made by Francis and by

Fteley and Stearns. The observed head H is first multiplied
* Transactions American Society of Civil Engineers, 1885, vol. 14, p. 194.
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by a number n, which depends upon the ratio of H' to #, and

then the discharge is to be computed by using the modified

Francis
'

formula
^
=

3-33 & (ff)* (67^

The values of n deduced by Herschel* are given in Table 67.

They are liable to a probable error of about one unit in the second

decimal place when H' is less than 0.2 H, and to greater errors

in the remainder of the table, values of n less than 0.70 being

in particular uncertain. It is seen that H' may be nearly one-

fifth of H without affecting the discharge more than two percent.

TABLE 67. FACTORS FOR SUBMERGED WEIRS

H'

H
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The addition of these gives the total theoretic discharge,

Q = V^ - b(H-H')* + V^- MT (ff -IT)*

which may be put into the more convenient form,

The actual discharge per second may now be written,

in which c is the coefficient of discharge.

Fteley and Stearns adopted the above formula for the dis-

charge, or placing M for c V^ they wrote,*

q
= Mb (H + i

H') (H - #')* (67),

and from their experiments deduced the following values of the

coefficient M :

for H'/H = o.oo 0.04 0.08 0.12 0.16 0.2 0.3

M =
3-33 3-35 3-37 3-35 3-32 3^8 3.21

for H'/H = o.4 0.5 0.6 0.7 0.8 0.9 i.o

11 = 3.15 3.11 3.09 3.09 3.12 3.19 3.33

These are for suppressed weirs
;

for contracted weirs few or no

experiments are on record.

Thus far in this article velocity of approach has not been consid-

ered. This may be taken into account in the usual way by determin-

ing the velocity-head h, and thus correcting H. But it is unnecessary,

on account of the limited use of submerged weirs, and the consequent

lack of experimental data, to develop this branch of the subject.

What has been given above will enable an approximate probable

estimate to be made of the discharge in cases where the water acci-

dentally rises above the crest, and further than this the use of sub-

merged weirs cannot be recommended.

Prob. 67. Compute by the two methods the discharge over a submerged
weir when b =

8, H =
0.46, and H' = 0.22 feet.

* Transactions American Society of Civil Engineers, 1883, vol. 12, p. 103.
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ART. 68. ROUNDED AND WIDE CRESTS

When the inner edge of the crest of a weir is rounded as at

A in Fig. 68, the discharge is materially increased as in the case

of orifices (Art. 53), or rather

the coefficients of discharge

become much larger than those

given for the standard sharp

crests. The degree of round-

ing influences so much the amount of increase that no definite

values can be stated, and the subject is here merely mentioned

in order to emphasize the fact that a rounded inner edge is al-

ways a source of error. If the radius of the rounded edge is small,

the sheet of escaping water is at a point below the top (a in the

figure), which has the practical effect of increasing the measured

head by a constant quantity. The experiments of Fteley and

Stearns show that when the radius is less than one-half an inch,

the discharge can be computed from the usual weir formula, seven-

tenths of the radius being first added to the measured head H.

Two wide-crested weirs with square inner corners are shown

in Fig. 68, the one at B being of sufficient width so that the de-

scending sheet may just touch the outer edge, causing the flow

to be more or less disturbed, while that at C has the sheet ad-

hering to the crest for some distance. In both cases the crest

contraction occurs, although water instead of air may fill the

space above the inner corner. For B the discharge may be

equal to or greater than that of the standard weir having the same
head H, depending upon whether the air has or has not free access

beneath the sheet in the space above the crest. For C the dis-

charge is always less than that of the standard weir.

Table 68 is an abstract from the results obtained by Fteley
and Stearns,* and gives the corrections in feet to be subtracted

from the depths on a wide crest, like C in Fig. 68, in order to

obtain the depths on a standard sharp-crested suppressed weir

giving the same discharge.
*
Transactions American Society of Civil Engineers, 1883, vol. 12, p. 96.
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TABLE 68. CORRECTIONS FOR WIDE CRESTS

Head on
Wide
Crest

Feet
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in coefficients for such cases is hence seen to be from 2.60

to 3-33-

Prob. 68. Compute the discharge for a weir like C in Fig. 68 when the

width of crest is 1.5 feet, the head 0.85 feet, and the length of weir 10 feet.

ART. 69. WASTE WEIRS AND DAMS

Waste weirs are constructed at the sides of reservoirs in order

to allow the surplus water to escape. They are usually arranged

so that the end contractions are suppressed. When the crest is

narrow and the front vertical, so that the descending sheet of

water has air upon its lower side, the discharge is approximately

given by Francis' weir formula (Art. 65),

in which b is the length of the crest, and H the head measured

some distance back from the crest. When the crest is wide and

the approach to it is inclined, as is often the case, the discharge

is somewhat smaller. For a crest about three feet wide and level,

with an inclined approach back of it, Francis deduced

q
=

3.01 bH
1*3

which, for a head of one foot, gives a discharge ten percent less

than that of the first formula.

In constructing a waste weir the discharge q is generally known
or assumed, and it is required to determine b and H. The latter

being taken at i, 2, or 3 feet, as may be judged safe and proper,
b is found by one of these formulas. For example, let the crest

be wide, q be 87 cubic feet per second, and H be 2.0 feet, then

log b = log 87
-

log 3.01
-

1.53 log 2

from which log b =
1.0004, whence b = 10.0 feet. When,

however, the crest is narrow, the first formula gives b =
9.2

feet. Evidently no great precision is needed in computing the

length of a waste weir, since it is difficult to determine the exact

discharge which is to pass over it, and an ample factor of safety
should be introduced to cover unusual floods.
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The above formulas may be used for obtaining the approximate

flow of a stream in which a dam with level crest has been built.

The water, however, is often received upon an apron of timber

or masonry, and the inclination of this, as well as the inclination

of the approach to the crest, materially modifies the discharge.

Thefon.u.a,

is usually employed for dams, and it is found that the value of

M, for English measures, may range under different circumstances

from 2.5 to 4.2. This formula is modified below for the influence

of velocity of approach (Art. 62).

Experiments were made by Bazin in 1897* on dams from 1.6

to 2.5 feet high with heads of water on the crests ranging from 0.2

Fig. 69a. . Fig. 696. 1 ig. 69c.

to i .4 feet. For the case of Fig. 69a the approach had an inclina-

tion of i on 2 and the front was vertical
;
when the width of the

crest was 0.33 feet, the coefficient M varied from 3.24 to 4.12 as

the head increased from 0.27 to 1.41 feet; when the width of

the crest was 0.66 feet, M varied from 3.10 to 3.89 for similar

heads. For the case of Fig. 696 both approach and apron had

slopes of i on 2 and the crest was 0.66 feet wide
;
here M increased

from 2.83 to 3.75 as the head ranged from 0.22 to 1.42 feet. For

Fig. 69f, with a crest 2.62 feet wide, M ranged from 2.47 to 2.76,

but when the upstream corner was rounded to a radius of 4 inches,

it ranged from 2.71 to 3.12. Here it is seen that widening the

crest decreases the discharge, as already noted in Art. 68, and that

the apron produces a similar influence.

Experiments on a larger scale were made by Rafter in 1898,

for the U. S. Deep Waterways Commission at the canal of the

Cornell hydraulic laboratory, in which the flow over dams

*
Annales des ponts et chaussees, 1898; translated by Rafter in

Transactions American Society of Civil Engineers, 1900, vol. 44, p. 254.
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was measured by a standard weir. The results of these ex-

periments are given in Table 69a, the first five being for

dams of the form shown in Fig. 69a, the next three for dams

like Fig. 696, and the next four for dams like Fig. 69c, those

marked with an asterisk having the upstream corner rounded

TABLE 690. COEFFICIENTS M FOR DAMS

Upstream
Slope
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3.33 to 3.46 for heads ranging from i.o to 6.0 feet. The < mi-

shown in Fig. 69e had a total width of about 23 feet and a height

of 4.53 feet, the slopes of the approach and apron being i on o.

and that just below the crest about i on }, the vertical depth
of this being 0.75 feet

;
for this the mean values of M ranged from

3.07 to 3.27 for heads ranging from i.o to 6.0 feet, the smaller co-

efficients being due to the contact of the water with the apron.

For ogee dams similar in cross-

section to Fig. 69/, experiments

were made in 1903
*
by the U. S.

Geological Survey. The widths

a of the various crests ranged
from 3.0 to 6.0 feet, the radii r

from i.o to 3.0 feet, and the rises

c from 0.75 feet to 2.88 feet.

From a discussion of these results

it was concluded that the coeffi-

cient M has a value of (3.78 0.16 s) H~ 6

,
where s is the ratio

of a to c in Fig. 69g. For example, when 5 =
3.0/1.5 and H =

4.0 feet, then M =
3.70.

In the table on the next page are shown the principal re-

sults of the above experiments on models of ogee dams :

The height of the crests above the bottom of the channel of

approach of all the models was 11.25 ^eet an^ the heads were

measured at two points, one 10.3 feet and the other 16.059

feet upstream from the weir crest. It was found that in general

the reading of the gage nearest the weir was not affected by
the surface curve for heads of less than three feet on the crest.

The water which was used in these experiments was measured

over a sharp-crested standard weir 6.65 feet high and having

a crest 15.93 ^eet in length.

By the use of these coefficients the discharge of a stream over

a dam may be computed with a good degree of precision. For-

* Water Supply and Irrigation Paper No. 200, p. 131.
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TABLE 69&. COEFFICIENTS M FOR OGEE DAMS
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the head on the crest of the weir being 2.12 feet. Also when the head is

4.24 feet.

ART. 70. THE SURFACE CURVE

The surface of the water above a weir or dam assumes a curve

whose equation is a complex one, but some of the laws that govern

the drop in the plane of the crest may be deduced.

Let H be the head on the level of the crest meas-

ured in perfectly level water at some distance

back of the weir, and let d be the depression or

drop of the curve below this level in the plane of

the weir (Fig. 70). Then the discharge per sec-

ond q can be expressed in terms of H and d by
formula (50) 4 , placing H for h% and d for hi, and

making hQ = o. This formula becomes, after replacing f I/
'

2g by M,

This expression, it may be remarked, is the true weir formula, and only

the practical difficulties of measuring H and d prevent its use. This

may be written
rf
i = #* _ ?/Mj

from which the drop d in the plane of crest of the weir can be found.

Let B be the breadth of the feeding canal, G its depth below the crest,

and v the mean velocity of approach ;
then also

q
= B(G + H)v

and inserting this in the expression for d* it becomes

di = H*- (G + H)v (70)
M&

which is an expression for the drop of the curve in terms of the dimen-

sions of the weir, the total head, and the velocity of approach.

The approximate value of the coefficient M is about 3.3 for English

measures, but precise values of d cannot be computed unless M and

H are known with accuracy. The formula, however, serves to ex-

emplify the laws which govern the drop of the curve in the plane of the

wi-ir. It shows that the drop increases with the head on the crest

and with the length of a contracted weir, that it decreases with the

breadth and depth of the feeding canal, and that it decreases with the

velocity of approach. It also shows for suppressed weirs, where B =
b,
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that the drop is independent of the length of the weir. All of these

laws except the last have been previously deduced by the discussion

of experiments.

The path of the stream after leaving the weir is closely that of

a parabola. In the plane of the crest the mean velocity is

V = q/b(H-d)

and the direction of this may be taken as approximately horizontal.

The range of a stream on a horizontal plane at the distance y below

the middle of the weir notch is then readily found. For, if x be this

range which is reached in the time /, then x =
Vt, and also y = \ gf~ ;

whence, by the elimination of /, there results gx
2 = 2 V2

y, and accord-

ingly the horizontal range at the depth y is

in which d is given by (70). For example, take a case where H =
3

feet, G =
23 feet, and v = 0.5 feet per second. From (70) the value

of d is found to be 1.17 feet. Now, when y = 50 feet, the last formula

gives x = 12.5 feet, which is the horizontal distance of the middle of

the stream from the vertical plane through the crest.

Prob. 70. In the above example what velocity of approach is necessary
in order that there may be no drop in the plane of the crest ? What is the

range for this case?

ART. 71. TRIANGULAR WEIRS

Triangular weirs are sometimes used for the measurement

of water, the arrangement being shown in Fig. 71. Let b be

the width of the orifice at the

water level, and H the head of

water on the vertex. Let an

elementary strip of the depth By

be drawn at a distance y below

the water level. From similar

triangles the length of this strip is (H - y)b/H and the elemen-

tary discharge through it then is

*Q = ~(H
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The integration of this between the limits H and o gives the the-

oretic discharge through the triangular weir, namely,

Q = &bV2g.H* (71)!

If the sides of the triangle are equally inclined to the vertical,

as should be the case in practice, and if this angle be a, the sur-

face width b may be expressed in terms of a and H, so that the last

formula becomes ,

<?
=

T̂ tana- V^g-H* (71),

The discharge is thus equal to a constant multiplied by the 2\

power of the measured depth.

Triangular weirs are used but little, as in general they are

only convenient when the quantity of water to be measured is

small. Such a weir must have sharp inner corners, so that the

stream may be fully contracted, and the sides should have equal

slopes. The angle at the lower vertex should be a right angle,

as this is the only case for which coefficients are known with pre-

cision. The depth of water above this lower vertex is to be meas-

ured by a hook gage in the usual manner at a point several

feet upstream from the notch. Making the angle at the vertex

a right angle, and applying a coefficient, the actual discharge

per second is given by the expression

in which // is the head of water above the vertex. Experiments
made by Thomson *

indicate that the coefficient c varies less

with the head than for ordinary weirs; this, in fact, was antici-

pated, since the sections of the stream are similar in a triangular

notch for all values of H, and hence the influence of the contrac-

tions in diminishing the discharge should be approximately
the same. As the result of his experiments the mean value of

c for heads between 0.2 and 0.8 feet may be taken as 0.592, and

hence the mean discharge in cubic feet per second through a

right-angled triangular weir may be written

* British Association Report, 1858, p. 133.
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in which, as usual, H must be expressed in feet. About 4 feet

is probably the greatest practicable value for H, and this gives

a discharge of only 81 cubic feet per second. When velocity

of approach exists, H in this formula should be replaced by H +
1.4 h, as for rectangular weirs with end contractions.

Prob. 71. A triangular orifice in the side of a vessel has a horizontal

base b and an altitude d, the head of water on the base being h and that on

the vertex being h + d. Show that the theoretic discharge through the

orifice is &^2g(b/d} UC* +<9* -(4 A + 10 <*)**].

ART. 72. TRAPEZOIDAL WEIRS

Trapezoidal weirs are sometimes used instead of rectangular

ones, as the coefficients vary less in value. The theoretic

discharge through a trapezoidal

weir which has the length b on

the crest, the head //, and the

length b + 2Z on the water sur-

face, as seen in Fig. 72, is the sum

of the discharges through a rect-

angle of area bH and a triangle of area zH. Taking the former

from (61 )i and the latter from (71) 2 ,
and replacing tana by z/H

is the theoretic discharge. Here z/H, which is the slope of the

ends, may be any convenient number, and it is usually taken as

J, as first recommended by Cippoletti.*

The reasoning from which this conclusion was derived is

based upon Francis' rule that the two end contractions in a

standard rectangular weir diminished the discharge by a mean

amount 3.33 X 0.2 H*. (Art. 65), or in general by the amount

c '

I ">/2 g X 0.2 H%. If the sides are sloped, however, the discharge

through the two end triangles is c V2g X zHL If, now, the

slope is just sufficient so that the extra discharge balances the

effect of the end "contractions, these two quantities are equal.

Equating them, and supposing that c has the same value in each,

*
Cippoletti, Canal Villoresi, 1887; see Engineering Record, Aug. 13, 1892.
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there results ; \II . Hence for such a trapezoidal weir the dis-

< harge should he tin- same as that from a suppressed rectangular

weir of length h, or, according to Francis, q = $.$$blll. Cip-

poletti. however, concluded from his experiments that the coeffi-

cient should be increased about one percent, and he recommended

j- 3.367W 1

(72)

as the formula for discharge over such a trapezoidal weir when

no velocity of approach exists.

Experiments by Flinn and Dyer* indicate that the coefficient

3.367 is probably a little too large. In 32 tests with trapezoidal

weirs of from 3 to 9 feet length on the crest and under heads rang-

ing from 0.2 to 1.4 feet, they found 28 to give discharges less than

the formula, the percentage of error being over 3 percent in

eight cases. The four cases in which the discharge was greater

than that given by the formula show a mean excess of about

3.5 percent. The mean deficiency in all the 32 cases was

nearly 2 percent. These experiments are not very precise,

since the actual discharge was computed by measurements on

a rectangular weir, so that the results are necessarily affected

by the errors of two sets of measurements. Cippoletti's for-

mula, given above, may hence be allowed to stand as a fair one

for general use with trapezoidal weirs in which the slope of the

ends is \. It can, of course, be written in the form

where the coefficient c has the mean value 0.629.

When velocity of approach exists, H in this formula is to be re-

placed by H -\- 1.4 h, where h is the head due to that velocity. In

order to do good work, however, h should not exceed 0.004 feet -

Other precautions to be observed are that the cross-section of the

canal should be at le^,st seven times that of the water in the plane of

the crest, and that the error in the measured head should not be greater

than one-third of one percent. On the whole, however, the coefficients

for the standard rectangular weir with end contractions are so definitely

established, and those for trapezoidal weirs so imperfectly known,

*
Transactions American Society of Civil Engineers, 1894, vol. 32, pp. 9-33.
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that the use of the latter cannot be recommended in any case where

the greatest degree of precision is required.

The above formula for the theoretic discharge may be applied to

the Cippoletti trapezoidal weir by putting z = \ H, and introducing

a coefficient; thus,'

is a formula for the actual discharge, in which the values of c are prob-

ably not far from those given in Table 63 for rectangular contracted

weirs. Here the term 0.2 H/b shows the effect of the two end triangles

in increasing the discharge.

Prob. 72. For a head of 0.7862 feet on a Cippoletti weir of 4 feet length

the actual discharge in 420 seconds was 3912.3 cubic feet. Compute the

discharge by the above formula, and find the percentage of error.

ART. 73. OBLIQUE WEIRS

In certain cases weirs or dams are built obliquely across streams

and in others there may be either a curve or one or more angles

in the line of the crest. When the volume of the flow in the stream

is small, so that the water may at all points approach the crest

in a direction sensibly at right angles to it, the discharge will be

proportional to the crest length and may be computed by the

formulas already given. When, however, the flow of the stream

becomes so great that the water approaches the crest in an oblique

direction, the discharge tends to approximate that over a weir

placed at right angles to the axis of the stream. This, however,
is not strictly true in case the obliquity be material. In such a

case the discharge for the same head is increased above that over

a weir built normal to the axis of the stream. This condition

is sometimes taken advantage of where it is desired to keep
down the effect of backwater during times of flood, but such an

arrangement causes a loss of available head during times of me-

dium and low water. The problem of the regulation of river

heights is, under certain conditions, an important one and is

well exemplified by the conditions at the Chaudiere Dam, Ottawa.*

Achielf experimented on weirs inclined to the axis of the chan-
*
Engineering News, June 30, 1910.

t Zeitschrift Verein Deutschen Ingenieure ;
see abstract in Engineering

Record, July 3, 1909.
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nel at angles varying from 15 to 90. These weirs were placed
in channels 1.64 and 3.28 feet in width, the end contractions were

suppressed, and the nappe was thoroughly aerated; their height

was 0.82 feet and the heads ranged from 0.04 to 0.60

feet. From these experiments the formula Fe
= i H/Gr

was deduced. Here H is the measured head on the weir, G the

height of the weir crest above the channel of approach, and r a

number taken from the table below. Fc then is a correction

factor by which the values of the coefficient for a vertical thin-

edged weir are to be multiplied in order to obtain the coefficients

for each unit of length of the oblique weir. This formula does

Angle of weir =15 30 45 60 75 90

r for broad channels =
1.4 2.8 5.0 9.1 26.3 oo

r for narrow channels = 1.2 2.1 3.6 7.7 26.3 oo

not hold when the ratio H/G is greater than 0.62, and this ratio

should be smaller as the obliquity of the weir increases. In

general it can be said that outside the range of the few experiments
which have been made but little is known on this subject.

Prob. 73. What is the coefficient for an oblique sharp-edged weir

with contractions suppressed, 19 feet long and two feet in height when the

head is 0.6 feet and the obliquity of the weir 45 degrees ?

ART. 74. COMPUTATIONS IN THE METRIC SYSTEM

The formulas for discharge in Arts. 61-64 are rational and may be

used in all systems, the coefficients c being abstract numbers. In the

metric system b and H are often expressed in centimeters, but they
should be reduced to meters for use in the formulas, and then q will

be in cubic meters per second. The mean value of \/2g is 4.427 and

that of i/2g is 0.05102.

(Art. 62) The head h in meters corresponding to the mean veloc-

ity of approach is to be computed from the formula

h = 0.05102 (q/A)* (74) i

in which A is in square meters. For example, take a weir where B
=

200, G =
oo, b = 45.1, H = 26.28 centimeters, and c = 0.620.
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Then by (63)! the discharge q
r

is 0.1112 cubic meters per second,

and from (74)]. the head h is 0.0002 meters.

(Art. 63) Table 740 gives values of the coefficient c for weirs

with end contractions, with arguments in the metric system. Thus,

if H =
5.45 centimeters and b = 0.45 meters, there is found, by in-

terpolation, c = 0.626, which is liable to a probable error of about

two units in the third decimal place.

TABLE 74a. COEFFICIENTS c FOR CONTRACTED WEIRS

Arguments in Metric Measures

Effective

Head in

Centi-

meters
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TABLE 746. COEFFICIENTS c FOR SUPPRESSED WEIRS

Arguments in Metric Measures

Effective

Head in

Centi-

meters
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TABLE 74c. COEFFICIENTS M FOR DAMS

Metric Measures

Up-
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CHAPTER 7

FLOW OF WATER THROUGH TUBES

ART. 75. Loss OF ENERGY OR HEAD

A tube is a short pipe which may be attached to an orifice

or be used for connecting two vessels. The most common form

is a cylinder of uniform cross-section, but conical forms are also

used, and in some cases a tube is made of cylinders with different

diameters. The laws of flow through tubes are important as

a starting-point for the theory of flow through pipes, for the dis-

charge from nozzles, and for the discussion of many practical

hydraulic problems. The theorem of Art. 31, that pressure-

head plus velocity-head is a constant for a given section of a

tube, is only true when there are no losses due to friction and im-

pact. As a matter of fact such losses always exist and must be

regarded in practical computations.

Energy in a tube filled with moving water exists in two forms,

in potential energy of pressure and in kinetic energy of mption.

Thus in the horizontal tube of

Fig. 750 let two piezometers

(Art. 37) be inserted at the sec-

tions fli and a? where the velocities

are Vi and vz and it is found that

the water rises to the heights hi

and hz above the middle of the

tube. Let W be the weight of

water that passes each section per
Fig. 75a.

second. Then in the first section the pressure energy per sec-

ond is Whi and the kinetic energy per second is W Vi
2
/2g, so

that the total energy of the water passing that section in one

second is Wkl + W-vl*/2g
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In the same manner the total energy of the water passing the

second section in one second is

Whz + W- v2
2
/2g

but this is less than the former because some energy has been

expended in friction and impact. Let Wh' be the amount of

energy thus lost
;
then equating this to the difference of the ener-

gies in the two sections, the W cancels out and

The quantity h' is called the lost head, and the equation shows

that it equals the difference of the pressure-heads plus the differ-

ence of the velocity-heads.

In hydraulics the terms
"
energy" and "head" are often used

as equivalent, although really energy is proportional to head. In

the general case, the lost head is not a loss of pressure-head only,

but a loss of both pressure-head and velocity-head. When,

however, the two sections are of equal area, the velocities vi

and v% are equal, since the same quantity of water passes each

section in one second ;
then the lost head h r

is hi h2 or the loss

occurs in pressure-head only. Here the loss is mainly due to

the roughness of the interior surface of the tube or pipe. It

should be noted that it is only necessary to measure the difference

hi
-

hz and this can be done by the methods of Art. 37.

Formula (75) i is applicable to all horizontal tubes and pipes,

and with a slight modification it is also applicable to inclined

ones, as will be

shown in Art. 85.

It also applies to a

flow from a standard

orifice, or to the flow

Fig. 75b. Fig. 75c .

from an orifice to

which a tube is at-

tached. Thus for the large vessel of Fig. 75b let the sections

be taken through the vessel and through the stream as it leaves

the tube. Then hi = h^ and since there is no pressure outside
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the tube. //_.
= o; also v\

= o and ?%
= v, then //' = It ?'-' 2#.

For tlu- rase in Fig. 75c, where the stream approaches with the

velocity z-i, the formula becomes h' =
//i+ (z>i

2 v2)/2g. In

both cases, if //' is made zero, these equations reduce to those

established in the chapter on theoretical hydraulics, where losses

of energy were not considered
;
thus for the second case the theo-

retic effective head // is equal to hi -f v\
2
/2g.

In order to use (75) i for numerical computations three quan-

tities must be known, the difference h\ hi, and the velocities

Vi and v>>. As a direct measurement of the velocities is usually

impracticable, these are generally computed from the measured

discharge q and the areas <ii and a% of the cross-sections
;
thus

Vi
=

q'a\ and % =
q/a-i- For example, let the cross-section be

circular, having diameters of 18 and 6 inches, and let the discharge

be 4.7 cubic feet per second
;
the areas are 1.767 and 0.196 square

feet, and the velocities are 2.66 and 23.94 feet per second. If

the difference of the pressure-heads is 8.85 feet, the lost head is

ti = 8.85 + o.oi555(2.66
2 -

23.94*)
=

0.05 feet

The general formula (75) i may be expressed in terms of the areas

of the sections and one of the velocities. Since a\i\ = 0^2 it may
be written

or // = //i-/^+-2-i (75),
VZi

2 / 2g

which are often convenient forms for numerical computations.

Prob. 75. In Fig. 750 let the areas a\ and a2 be i.o and 0.5 square feet,

//,
- //, = 0.697 feet, and v\ = 3.5 feet per second. What is the value of

the lost head ?

ART. 76. Loss DUE TO EXPANSION OF SECTION

When a tube or pipe is filled with flowing water a loss of head

is found to occur when the section is enlarged, so that the velocity

is diminished. This case is shown in Fig. 76a, where Vi and : :

are the velocities in the smaller and larger sections and //i and //2

the corresponding pressure-heads. The interior surface may be
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very smooth, so that friction has but little influence, and yet

there will usually be more or less loss due to the fact that the veloc-

ity i)i is changed to the smaller value vz . Formula (75) i is here

directly applicable and gives the loss of head. It is seen that

hi
-

hz must be negative for this case and that its numerical

value will be less than that of the difference of the velocity-heads.

The general formula (75)i gives the loss of head due not only to

expansion of section, but to all resistances between any two sec-

tions of a horizontal tube or pipe.

When there is a sudden enlargement of section, as in Fig.

76ft, energy is lost in impact. In the section AB the pressure-

Fig. 76a.

head is hi and the velocity-head is fli
2
/2g, while in the section CD

the pressure-head has the larger value hz and the velocity-head

has the smaller value v2
2
/2g. At the section MN, near the place

of sudden expansion, the pressure-head is also hi, since the velocity

Vi is maintained for a short distance after leaving the small

section; its direction, however, being changed so as to form

whirls and foam. In this region the impact occurs, the velocity

Vi being finally decreased to %. Let a2 be the area of the sections

MN and CD, and w the weight of a cubic unit of water. Then

by (15) the hydrostatic pressure normal to the section CD is

wazhz, and that normal to the section MN is wazhi. The dif-

ference of these pressures is the force which causes the veloc-

ity DI to decrease to vz ,
and by Art. 27, this force is equal to

W(vi Vz)/g, where W is the weight of water passing the section

CD in one second. Hence
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and, since W equals WQ^VZ, this equation becomes

A,-*,-ak^ (76),

Inserting this value of ^ hi in (75) i, it reduces to

which is the loss of head due to sudden expansion of section, or

rather due to the sudden diminution of velocity that is caused

by such expansion.

When the expansion of section is made gradually and with

smooth curves, the velocity Vi will decrease without whirl and

foam, so that no loss in impact occurs. In this case the kinetic

energy w Vi
2
/2g is changed into pressure energy, as the velocity

Vi decreases to %. There is, however, no distinct line of demar-

cation between sudden and gradual expansion, so that in many
practical pases it is necessary to make measurements of the dis-

charge and of the head h-> hi in order to compute the lost head

h1 from (75) i, which is a formula applicable to all cases.

Sudden enlargement of section should always be avoided in

tubes and pipes owing to the loss of head that it causes, which

may often be very great. For example, let there be no pressure-

head in the section ai and let v\ be due to a head // so that v\
=

\/2g^ ;
let the area 0% be four times that of ai so that z>2 is one-

fourth of v\. The loss of head due to sudden expansion then is

so that more than one-half of the energy of the water in ai is

lost in impact, having been changed into heat. In the section

02 the effective head is ^ h, of which T\;
h is velocity-head and

^ h is pressure-head.

Formula (76) i may be expressed in terms of the areas of the
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sections and one of the velocities, since a\v\ = a&z. The value

of //' takes the two forms

1)\ I (Li \ Vo /<-m\=
( i ) (7b) 2

2g \ai / 2g

and these show that no loss of head occurs when a\ = a^.

Prob. 76. In a horizontal tube like Fig. 760 the diameters are 6 inches

and 12 inches, and the heights of the pressure-columns or piezometers are

1 2.16 feet and 12.96 feet above the same bench-mark. Find the loss of

head between the two sections when the discharge is 1.57 cubic feet per

second, and also when it is 4.71 cubic feet per second.

ART. 77. Loss DUE TO CONTRACTION OF SECTION

When a sudden contraction of section in the direction of the

flow occurs, as in Fig. 77, the water suffers a contraction similar

to that in the standard orifice, and hence in its expansion to fill

the second section a loss of head results. Let vi be the ve-

locity in the larger section and v that

in the smaller, while v' is the velocity

in the contracted section of the flowing

stream; and let di, a, and a' be the

corresponding areas of the cross-sec-

tions. From the formula (76) 2 the loss

of head due to the expansion of section

from a' to a is

C\
9 o / \ 2 2

2
7
_

IY^=(i_ I
)

2^
(77),

a J 2? \c J 22Fig. 77.

in which c' is the coefficient of contraction of the stream or the

ratio of a' to a (Art. 44).

The value of c' depends upon the ratio between the areas a

and oi. When a is small compared with ai, the value of c' may
be taken at 0.62 as for orifices (Art. 44). When a is equal to ai,

there is no contraction or expansion of the stream and c' is unity.
Let d and d\ be the diameters corresponding to the areas a and a\ t

and let r be the ratio of d to di. Then experiments seem to in-

dicate that an expression of the form

i.i r
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gives the law of variation of c' with r. Placing c' = 0.62 and

r = o gives one equation between m and n
; placing c' = i.oo

and r = i gives another equation ;
and the solution of these fur-

nishes the values of m and n. Thus is found

, . O.O4l8 /TTv
c' = 0.582 +

t ^_ r
(77)2

from which approximate values of c' can be computed :

for r o.o 0.4 0.6 0.7 0.8 0.9 0.95 i.o

c' = 0.62 0.64 0.67 0.69 0.72 0.79 0.86 i.oo

from which intermediate values may often be taken without the

necessity of using the formula.

For a case of gradual contraction of section, such as shown in

Fig. 75a, the loss of head is less than that given by formula (77) i,

and it can only be determined from three measured quantities

by the help of the general formulas of Art. 75. If the change
of section is made so that the stream has no subsequent enlarge-

ment, loss of head is avoided
; for, as the above discussions show,

it is the loss in velocity due to sudden expansion which causes the

loss of head.

The loss due to sudden contraction of a tube or pipe is often

much smaller than that due to sudden expansion. For instance, let

the diameter of the large section be three times that of the smaller,

and the velocity in the large section be 2 feet per second, then the loss

of head which occurs when the flow passes from the small to the

large section is, by Art. 76,

h
r =

0.01555(18 2)
2 = 4.0 feet

But if the flow occurs in the opposite direction, the ratio r is J, the co-

efficient c' is about 0.64, and the loss of head is

h' = 0.01555^ iYi82 = 1.6 feet

\o.64 /

When, however, the ratio r is higher than 0.77, the loss due to sudden

contraction is greater than that due to sudden expansion. Thus, if

the diameter of the small section be nine-tenths that of the large one
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and the velocity in the large section be 2 feet per second, the loss of

head when the flow passes from the small to the large section is

V =
o.oi55$f-f-

~ ZT 22 = - 34 feet

Vp.Si J

But if the flow occurs in the opposite direction, the ratio r is 0.9, the

coefficient c' is 0.79, and the loss of head is

h' = o.oi555(
- i

)
2.472

= 0.0066 feet

Vo.79 /

As formula (77)2 is an empirical one the results derived from it are tc

be regarded as approximate.

Prob. 77. Compute the loss of head when a pipe which discharges 1.57

cubic feet per second suddenly diminishes in section from 12 to 6 inches in

diameter.

ART. 78. THE STANDARD SHORT TUBE

An adjutage is a tube inserted into an orifice, and the short-

tube adjutage, consisting of a cylinder whose length is about

three times its diameter, is the most common form. For

convenience it will be called the standard short tube, because

its theory and coefficients form a starting-point with which all

other adjutages may be compared. This short tube is of little

value for the measurement of water, since the coefficients for

standard orifices are much more definitely known. The discus-

sion here given is for the case where the inner edge is a sharp,

definite corner like that of the standard orifice (Art. '43). When
the tube is only two diameters in length, the stream passes through

without touching it, as in

Fig. 78a, and the discharge

is the same as from the

orifice. When it is length-

ened sufficiently, the

stream expands and fills

Fig. 78a. Fig. 786. , , . _. ,_Q ,

the tube, as in rig. 780,

and the discharge is much increased. By observations on glass

tubes it is seen that the stream usually contracts after leaving
the inner end of the tube and then expands. This contraction
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may be apparently destroyed by agitating the water or by strik-

ing the tube, and the entire tube is then filled, yet if a hole is

bored in the tube near its inner end, water does not flow out, but

air enters, showing that a negative pressure exists.

An estimate of the velocity and discharge from this short-

tube adjutage may be made as follows: Let h be the head on the

inner end of the tube and v the velocity of the outflowing water.

The head h equals the velocity-head v*/2g plus all the losses of

head. At the inner edge a loss of o.n v2/2g occurs in entering

the tube, as in the standard orifice (Art. 56), and then there is

a loss of (' v)
2
/2g when the contracted stream suddenly ex-

pands so that its velocity v' is reduced to v (Art. 76). If a'

and a are the areas of these two sections, their ratio a'/a is the

coefficient of contraction c' . Then

v
2

,

/i V v
2

,
v2= o.n h[-7 i 1

2g \C' J 2g 2g

Now, taking for c' its mean value 0.62, this equation reduces

to v = 0.82 ~\f2gh, or the coefficient of velocity of the issuing

jet is 0.82. Since the cross-section of the stream at the outer

end of the tube is the same as that of the tube, the coefficient

of contraction for that end is unity, and hence (Art. 46) the mean
value df\the coefficient of discharge is also 0.82.

While this theoretic discussion does not take account of losses

due to the small frictional resistances along the sides of the tube

after the stream has expanded, the mean results of the experi-

ments of Venturi and Bossut give closely the same coefficient.

Hence both theory and practice agree in establishing as an aver-

age value for the short tube,

Coefficient of discharge c = 0.82

This coefficient, however, ranges from 0.83 for low heads to 0.79

for high heads. It is greater for large tubes than for small ones,

its law of variation being probably the same as for orifices (Art.

47), but sufficient experiments have not been made to state defi-

nite values in the form of a table.
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A standard orifice gives on the average about 61 percent of

the theoretic discharge, but by the addition of a tube this may
be increased to 82 percent. The velocity-head of the jet from

the tube is, however, much less than that from the orifice. For,

let v be the velocity and h the head, then (Art. 45) for the standard

i)
=

0.98 ^/2gh or i)
2
/2g

=
0.96 h

and similarly for the standard tube

v = 0.82 ~\/2gh or v
2
/2g

=
0.67 h

Accordingly the velocity-head of the stream from the standard

orifice is 96 percent of the theoretic velocity-head, and that of

the stream from the standard tube is only 67 percent. Or

if jets are directed vertically upward from a standard orifice and

tube, as in Fig. 78c, that from the former rises to the height 0.96 h,

while that from the latter rises

to the height 0.67 h, where h is

the head measured downward

from the surface of water in

the reservoir to the point of

exit from the orifice.

The energy lost in the

stream from the standard ori-

fice is hence 4 percent of the

theoretic energy, but 33 per-

cent is lost in the stream from

the standard tube. In reality energy is never lost, but is merely
transformed into other forms of energy. In the tube the one-

third of the total energy which has been called lost is only lost

because it cannot be utilized as work
;
it is, in fact, transformed

into heat, which raises the temperature of the water. The above

explanation shows that most of this loss is due to impact re-

sulting from sudden expansion of the stream.

The loss of head in the flow from the short tube is large, but
not so large as might be expected from theoretical considerations

based on the known coefficients for orifices. When the tube has
a length of only two diameters, the water does not touch its

007/i

Fig. 78c.
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inner surface, and the flow occurs as from a standard orifice.

The velocity in the plane of the inner end is then 61 percent of

the theoretic velocity, since the mean coefficient of discharge

is 0.61. Now when the tube is sufficiently increased in length,

its outer end will be filled, and if the contraction still exists, it

might be inferred that the coefficient for that end would be

also 0.6 1
;
this would give a velocity-head of (0.6 1)

2 h or 0.37 //,

so that the loss of head would be 0.63 h. Actually, however, the

coefficient is found to be 0.82 and the loss of head only 0.33 //.

It hence appears that further explanation is needed to account

for the increased discharge and energy.

In the first place, a loss of about 0.04 h occurs at the inner end

of the tube in the same manner as in the standard orifice, and only

the head 0.96 h is then available for the subsequent phenomena.
If the coefficient c' for the contracted section has the value 0.62,

the velocity in that section is

O.O2

and the velocity-head for that section is

w'Y2#=i.75 /*

and consequently the pressure-head in that section is

0.96 h 1.75 h = 0.79 h

There exists therefore a negative pressure or partial vacuum near

the inner end of the tube which is sufficient to lift a column of

water to a height of about three-fourths the head. This conclu-

sion has been confirmed by experiment for low heads, and was

in fact first discovered experimentally by Venturi. For high

heads it is not valid, since in no event can atmospheric pressure

raise a column of water higher than about 34 feet (Art. 4) ; prob-

ably under high heads the coefficient of contraction of the stream

in the tube becomes much greater than 0.62.

The cause of the increased discharge of the tube over the

orifice is hence a partial vacuum, which causes a portion of the

atmospheric head of 34 feet to be added to the head h, so that the
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flow at the contracted section occurs as if under the head h -f hi.

The occurrence of this partial vacuum is attributed to the fric-

tion of the water on the air. When the flow begins, the stream

is surrounded by air of the normal at-

mospheric pressure which is imprisoned

as the stream fills the tube. The friction

of the moving water carries some of this

air out with it, thus rarefying the re-

maining air. This rarefaction, or nega-

tive pressure, is followed by an increased

velocity of flow, and the process con-

tinues until the air around the contracted

section is so rarefied that no more is re-

moved, and the flow then remains per-
Fig. 78d.

manent, giving the results ascertained

by experiment. The partial vacuum causes neither a gain nor

loss of head, for although it increases the velocity-head at the

contracted section to 1.75 h, there must be expended 0.79 h in

order to overcome the atmospheric pressure at the outer end of

the tube. The experiments of Buff have proved that in an

almost complete vacuum the discharge of the tube is but little

greater than that of the orifice.*

Prob. 78. When the coefficient of contraction for the contracted sec-

tion is 0.70, find the probable coefficient of discharge and also the negative

pressure-head.

ART. 79. CONICAL CONVERGING TUBES

Conical converging tubes are used when it is desired to obtain

a high efficiency in the energy of the stream of water. At A
, Fig.

79, is shown a simple converging tube, consisting of a frustum of

a cone, and at B is a similar frustum provided with a cylindrical

tip. The proportions of these converging tubes, or mouthpieces,

vary somewhat in practice, but the cylindrical tip when em-

ployed is of a length equal to about 2\ times its inner diameter,

while the conical part is eight or ten times the length of that

* Annalen der Physik und Chemik, 1839, vol. 46, p. 242.
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diameter, the angle at the vertex of the cone being between

10 and 20 degrees.

The stream from a conical converging tube like A suffers

a contraction at some distance beyond the end. The coefficient

of discharge is higher than

that of the standard tube,

being generally between 0.85

and 0.95, while the coefficient

of velocity is higher still.

Experiments made by d'Au-

buisson and Castel on conical

converging tubes 0.04 meters long and 0.0155 meters in di-

ameter at the small end, under a head of 3 meters, furnish

the coefficients of discharge and velocity given in Table 79.

TABLE 79. COEFFICIENTS FOR CONICAL TUBES

Fig. 79.

Angle of Cone
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seems to teach that a conical frustum does not usually give as

high a velocity as a standard orifice.

Under very high heads, over 300 feet, Hamilton Smith found

the actual discharge to agree closely with the theoretical, or the

coefficient of discharge was nearly i.o, and in some cases slightly

greater.* His tubes were about 0.9 feet long, o.i feet in diameter

at the small end and 0.35 feet at the large end, the angle of

convergence being 17. As these figures indicate a contrac-

tion of the jet beyond the end, it cannot be supposed that the

coefficient of discharge in any case was really as high as his ex-

periments indicate. Under these high heads the cylindrical

tip applied to the end of a tube produced no effect on the dis-

charge, the jet passing through without touching its surface.

Prob. 79. When the coefficient of discharge of a tube is 0.98 and the

coefficient of velocity of the jet is 0.995, compute the coefficient of contrac-

tion of the jet.

ART. 80. INWARD PROJECTING TUBES

Inward projecting tubes, as a rule, give a less discharge than

those whose ends are flush with the side of the reservoir, due to

the greater convergence of the lines of direction of the filaments

of water. At A and B, Fig. 80, are shown inward projecting

tubes so short that the water merely touches their inner edges,

and hence they may more properly be called orifices. Experi-
ment shows that the case at A, where the sides of the tube are

normal to the side of the reservoir, gives the minimum coefficient

of discharge c = 0.5, while for B the value lies between 0.5 and
that for the standard orifice at C. The inward projecting cylin-
drical tube at D has been found to give a discharge of about

72 percent of the theoretic discharge, while the standard tube

*
Hydraulics (London and New York, 1886), p. 286.
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(Art. 78) gives 82 percent. For the tubes E and F the coefficient s

depend upon the amount of inward projection, and they arc

much larger than 0.72 for both cases, when computed for the

area of the smaller end.

It is usually more convenient to allow a water-main to pro-

ject inward into the reservoir than to arrange it with its mouth
flush to a vertical side. The case D, in Fig. 80, is therefore of

practical importance in considering the entrance of water into

the main. As the end of such a main has a flange, forming a

partial bell-shaped mouth, the value of c is probably higher

than 0.72. The usual value taken is 0.82, or the same as for the

standard tube. Practically, as will be seen later, it makes little

difference which of these is used, as the velocity in a water-main

is slow and the resistance at the mouth is very small compared
with the frictional resistances along its length.

Prob. 80. Find the coefficient of discharge for a tube whose diameter

is one inch when the flow under a head of 9 feet is 22.1 cubic feet in 3 minutes

and 30 seconds.

ART. 81. DIVERGING AND COMPOUND TUBES

In Fig. 81 is shown a diverging conical tube, BC, and two

compound tubes. The compound tube ABC consists of twa

cones^the converging one, AB, be-

ing much shorter than the diverg-

ing one, BC, so that the shape

roughly approximates to the form

of the contracted jet which issues

from an orifice in a thin plate.

In the tube AE the curved con-

verging part AB closely imitates

the contracted jet, and BB is a

short cylinder in which all the

filaments of the stream are sup-

posed to move in lines parallel to

the axis of the tube, the remaining part being a frustum of a

cone. The converging part of a compound tube is often called

a mouthpiece and the diverging part an adjutage.

i > y~t * :

C

Fig. 81.
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Many experiments with these tubes have shown the inter-

esting fact that the discharge and the velocity through the small-

est section, B, are greater than those due to the head; or, in

other words, that the coefficients of discharge and velocity for

this section are greater than unity. One of the first to notice

this was Bernouilli in 1738, who found c = 1.08 for a diverging

tube. Venturi in 1791 experimented on such tubes, and showed

that the angle of the diverging part, as also its length, greatly

influenced the discharge. He concluded that c would have a

maximum value of 1.46 when the length of the diverging part

was nine times its least diameter, the angle at the vertex of the

cone being 5 06'. Eytelwein found c = 1.18 for a diverging

tube like BC in Fig. 81, but when this tube was used as an ad-

jutage to a mouthpiece AB, thus forming a compound tube ABC,
he found c = 1.55.

The experiments of Francis in 1854 on a compound tube like

ABCDE are very interesting.* The curve of the converging

part AB was a cycloid, BB was a cylinder, and the diameters at

A, B, C, D, and E were 1.4, 0.102, 0.145, 0.234, and 0.321 feet.

The piece BB was o.i feet long, and the others each i foot;

these were made to screw together, so that experiments could

be made on different lengths. A sixth piece, EF, not shown in

the figure, was also used, which was a prolongation of the diverg-

ing cone, its largest diameter being 0.4085 feet. The tubes were

cast iron, and quite smooth. The flow was measured with the

tubes submerged, and the effective head varied from about o.oi

to 1.5 feet. Excluding heads less than o.i feet, the following
.shows the range in value of the coefficients of discharge:
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The maximum discharge was thus found to occur with the tube

AE, and to be 2.43 times the theoretic discharge that would be

expected for the small section BB. In general the coefficients

increased with the heads, the value 2.08 being for a head of 0.13

feet and 2.43 for a head of 1.36 feet; for 1.39 feet, however, c

was found to be 2.26.

These coefficients of discharge are the same as the coefficients

of velocity, since the tube was entirely filled. Thus, when the

coefficient for the section BB was 2.43, the velocity was

v = 2

and the velocity-head was

V*/2g
=

(2.43 )
2
/*

Therefore the flow through the section BB was that due to a head

5.9 times greater than the actual head of 1.36 feet; or, in other

words, the energy of the water flowing in BB was 5.9 times the

theoretic energy. Here, apparently, is a striking contradic-

tion of .the fundamental law of the conservation of energy.

The explanation of this apparent contradiction is the same as

that given in Art. 78 for the short-tube adjutage. The increased

velocity and discharge is due to the occurrence of a partial vac-

uum near the inner end of the adjutage BC. The pressure of the

atmosphere on the water in the reservoir thus increases the hydro-

static pressure due to the head, and the increased flow results.

The energy at the smallest section is accordingly higher than the

theoretic energy, but the excess of this above that due to the head

must be expended in overcoming the atmospheric pressure on

the outer end of the tube, so that in no case does the available

exceed the theoretic energy. No contradiction of the law of

conservation therefore exists.

To render this explanation more definite, let the extreme case be

considered where a complete vacuum exists near the inner end of the

adjutage, if that were possible, as it perhaps might be with a tube of

a certain form. Let h be the head of water in feet on the center of

the smallest section. The mean atmospheric pressure on the water

in the reservoir is equivalent to a head of 34 feet (Art. 4). Hence

the total head which causes the discharge into the vacuum is h -h 34



194 Chap. 7. Flow of Water through Tubes

and the velocity of flow is nearly ^2g(h+34). Neglecting the re-

sistances, which are very slight if the entrance is curved, the coefficients

of velocity and discharge can now be found
;
thus :

iorh=ioo,

ioth= 10,

for/z= i,

The coefficient hence increases as the head decreases. That this is

not the case in the above experiments is undoubtedly due to the fact

that the vacuum was only partial, and that the degree of rarefaction

varied with the velocity. The cause of the vacuum, in fact, is to be

attributed to the velocity of the stream, which by friction removes a

part of the air from the inner end of the adjutage.

It follows from this explanation that the phenomena of increased

discharge from a compound tube could not be produced in the absence

of air. The experiment has been tried on a small scale under the re-

ceiver of an air-pump, and it was found that the actual flow through

the narrow section diminished the more complete the rarefaction.

It also follows that it is useless to state any value as representing,

even approximately, the coefficient of discharge for such tubes.

Prob. 81. Compute the pressure per square inch in the section BB of

Francis' tube when h = 1.36 feet and c =
2.43. What is the height of the

column of water that can be lifted by a small pipe inserted at BB ?

ART. 82. SUBMERGED TUBES

As shown in Art. 51 the effective head h which causes the flow

through a submerged orifice or tube is the difference in the level

of the water above and below

the orifice or tube. This dif-

ference h, as in Fig. 82, also

represents the loss of head oc-

casioned by the flow through

the tube. The discharge

through a submerged tube is

probably somewhat less than that from the same tube when dis-

charging freely into the air. Stewart,* at the laboratory of the

*
Engineering Record, Sept. 28, 1907.
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University of Wisconsin, experimented on large submerged tubes

from 4 feet by 4 feet square. These tubes varied in length

from 0.3 to 14.0 feet, while the heads h ranged from 0.05 to

0.30 feet. Experiments were made under various conditions of

entrance by placing at the mouth of the tubes an elliptical

mouthpiece as shown in Fig. 82. This mouthpiece was made

in four parts, and after experiments with the straight square-

edged tube had been run, others with the bottom of the mouth-

piece in place, with the bottom and one side, with the bottom and

two sides, and with all four of its parts in position were made.

In the following table are shown the results of these experi-

ments; the coefficients in the first line opposite each head being

those for the square-edged tube, while those in the second line

are for the same tube with the full elliptical mouthpiece in posi-

tion as shown.

TABLE 82. COEFFICIENTS FOR SUBMERGED TUBES

Head
in

Feet
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in the effective head. The length of the square-edged tubes

experimented on was evidently not sufficient to cause the friction

in them to overcome the tendency to greater discharge due to

contraction at entrance and subsequent expansion in the tube.

Prob. 82. What will be the discharge through a submerged square-

edged tube 5 feet by 4 feet in section and 10 feet long, when the difference

between the water levels above and below it is 0.5 feet?

ART. 83. NOZZLES AND JETS

For fire service two forms of nozzles are in use. The smooth

nozzle is essentially a conical tube like A in Fig. 79, the larger

end being attached to a hose, but it is often provided with a cylin-

drical tip and sometimes the larger end is curved, as shown in

Fig. 830. The ring nozzle is a similar tube, but its end is con-

Fig. 83a. Fig. 83&.

tracted so that the water issues through an orifice smaller than

the end of the tube. The experiments of Freeman show that the

mean coefficient of discharge is about 0.97 for the smooth nozzle

and about 0.74 for the ring nozzle.* The smooth nozzle is used

much more than the ring nozzle.

Let d be the diameter of the pipe or hose and D the diameter

of the outlet at the end of the nozzle, and let v and V be the cor-

responding velocities. Let hi be the pressure-head at the en-

trance to the nozzle
;
then the effective head at the entrance to

the nozzle is

and the velocity at the end of the nozzle is V = Ci ^/2gH, where

ci is the coefficient of velocity. The reasoning of Art. 50 applies

here, if the ratio D2
/d

2
is used in place of a/A, and hi in place

of h
y
and hence

/ ,

(83)!

*
Transactions American Society of Civil Engineers, 1889, vol. 21, pp. 303-482.
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is the velocity of flow from the nozzle, c being the coefficient of

discharge. The discharge per second is, from formula (50) 2 ,

The effective head at the nozzle entrance is

77= J_ V* _

and the velocity-head of the issuing jet is

2g i-

which gives the height to which the jet would rise if there were

no atmospheric resistances. In these formulas D/d is an ab-

stract number, and to find its value D and d may be taken in any
unit of measure.

When h\ and D are in feet, g is to be taken as 32.16 feet per

second per second. Then (83) i gives V in feet per second and

(88)2 gives q in cubic feet per second. When the gage at the nozzle

entrance gives the pressure p\ in pounds per square inch, h\ in

feet is found from 2.304^1. It is a common practice in figuring

on fire-streams to compute the discharge in gallons per minute.

For this case, if D is taken in inches,

gives the discharge in gallons per minute.

For smooth nozzles the value of the coefficient of velocity

c\ is the same as that of the coefficient of discharge c, since the jet

issues without contraction. The experiments of Freeman fur-

nish the following mean values of the coefficient of discharge for

smooth cone nozzles of different diameters under pressure-heads

ranging from 45 to 180 feet :

Diameter in inches = J f i i| \\ \\

Coefficients = 0.983 0.982 0.972 0.976 0.971 0.959

These values were determined by measuring the pressure p\

and the discharge q, from which c can be computed by the last
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formula. For example, a nozzle having a diameter of i.ooi

inches at the end and 2.50 inches at the base discharged 208.5

gallons per minute under a pressure of 50 pounds per square

inch at the entrance. Here D =
i.ooi, d =

2.5, pi
=

50, and

q =
208.5, and inserting these in the formula and solving for

,
there is found c = 0.985.

In ring nozzles the ring which contracts the entrance is usually

only ye or f inch in width. The effect of this is to diminish the

discharge, but the stream is sometimes thrown to a slightly greater

height. On the whole, ring nozzles seem to have no advantage
over smooth ones for fire purposes. As the stream contracts

after leaving the nozzle, the coefficient of velocity c\ is greater

than the coefficient of discharge c. The value of c being about

0.74, that of Ci is probably a little larger than 0.97. In using

(83) i for ring nozzles these values of c\ and c should be inserted,

but in using (83) 2 only the value of c is needed.

According to Freeman's experiments, the discharge of a

J-inch ring nozzle is the same as that of a f-inch smooth nozzle,

while the discharge of a ij-inch ring nozzle is about 20 percent

greater than that of a i-inch smooth nozzle. The heights of

vertical jets from a iJ-inch ring nozzle are about the same as those

from a i-inch smooth nozzle, while the jets from a if-inch

ring nozzle are slightly less in height than those from a i J-inch

smooth nozzle.

The vertical height of a jet from a nozzle is very much less,

on account of the resistance of the air, than the value deduced

above for V2
/2g. For instance, let a smooth nozzle i inch in

diameter attached to a 2.5-inch hose have c = 0.97 and the pres-
sure-head hi = 230 feet

;
then the computation gives the velocity-

head V2
/2g as 221 feet, whereas the average of the highest drops

in still air will be about 152 feet high and the main body of water

will be several feet lower. Table 83, compiled from the results

of Freeman's experiments, shows for three different smooth
nozzles the height of vertical jets, column A giving the heights
reached by the average of the highest drops in still air, and column
B the maximum limits of height as a good effective fire-stream
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TABLE 83. VERTICAL JETS FROM SMOOTH NOZZLES

Indicated
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the high velocity of the sheet of water around the ball. The cup is

usually so arranged that the ball cannot be driven out of it, for this

might occur under the first impact of the jet, but when the flow has

become steady, there is no tendency of this kind, and the ball is seen

slowly revolving upon the cushion of water without touching any part

of the cup.

Prob. 83. A nozzle if inches in diameter attached to a play-pipe 2\

inches in diameter discharges 310.6 gallons per minute under an indicated

pressure of 30 pounds per square inch. Find the velocity of the jet and the

coefficient c\.

ART. 84. LOST HEAD IN LONG TUBES

When water issues from an orifice, tube, pipe, or nozzle

with the velocity ,
its velocity-head is v

2
/2g, and it is only this

part of the total effective head h that can be utilized for the pro-

duction of work. The lost head then is

Now if ci is the coefficient of velocity for the section where the

discharge occurs, the velocity v is given by c\ '\/2gh, and hence

2g

is a general expression for the lost head in terms of the velocity-

head. For the standard orifice (Art. 45), the mean value of c\

is 0.98 and for an orifice perfectly smooth c\ is i.oo; hence

from (84)! # ,,
h =

0.04 and h o
2S

are the losses of head for these two cases.

For the standard short cylindrical tube (Art. 78) the value

of c\ is about 0.82, and the loss of head is

- = <>-
2g 2g

For the inward projecting cylindrical tube (Art. 80) the value

of ci is about 0.72, and hence the loss of head is

2g 2g
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Accordingly the loss of head for the inward projecting tul>

nearly equal to the velocity-head of the issuing stream, while

that from the standard tube is about one-half the velocity-head.

When a tube is longer than three diameters, it becomes a long

tube or a pipe. Here the loss of head is much greater because

the water meets with frictional resistances along the interior sur-

face, and the longer the pipe, the greater is this resistance and the

slower is the velocity. The formula (84)i gives the total loss of

head for this case also. For example, the experiments of Eytel-

wein and others have given values of c\ for the cases below, and

from these the corresponding values of the total lost head have

been computed. Let / denote the length of the pipe and d its

diameter, the end connected with the reservoir being arranged
like the standard tube; then

for / = i2d c\
=

0.77 h' = 0.69 v
2
/2g

for / = 36^ c\
=

0.67 h' = 1.23 v
2
/2g

for / = 6od Ci
= 0.60 h' = 1.77 v

2
/2g

Now in each of these cases the amount 0.49 v
2
/2g is lost in enter-

ing the tui^e and in impact, as in the standard short tube. Hence

the loss of head in friction in the remaining length of the pipe

is h" = h' - 0.4QV
2
/2g, or

for / = i2d h" = 0.20 v
2
/2g

for / = tfd h" = 0.74 v
2
/2g

which shows that the frictional losses increase with the length

of the pipe. The length of the pipe in which the entrance losses

occur is about 3</; hence if 3^ be subtracted from each of the above

lengths, the lengths in which the friction loss occurs are gd, 33^,

and $jd, and it is seen that the above losses of head in friction

are closely proportional to these lengths. By these and many
other experiments it has been shown that the loss of head in

friction varies directly with the length of the pipe.

The lost head has here been expressed in terms of the velocit v-

head", but it can also be expressed in terms of the total head h
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that causes the flow. For, substituting in (84) i the value of v

given by c\ ^/2gh, it reduces to

ti = (i-tf)h (84)2

Thus, for the standard short tube h' =
0.33 h

;
for the inward

projecting tube h' = 0.48 h, and for the above tube or pipe whose

length is 60 diameters h' = 0.64 h.

Prob 84. Find the ratio of the kinetic energy in the jet from a standard

orifice to that in the jet from a standard tube, the diameters of orifice and

tube being the same.

ART. 85. INCLINED TUBES AND PIPES

The tubes discussed in this chapter have generally been re-

garded as horizontal, but, if this is not the case, the formulas for

velocity and discharge may be applied to them by measuring the

head from the water level in the reservoir down to the center of

the head of the pipe. Thus, for the nozzles of Art. 83, it is under-

stood that the tip is at the same level as the gage which registers

the pressure pi or the pressure-head hi ;
if the tip be lower than

the gage by the vertical distance d\, the true pressure-head to be

used in the formula is hi + di ;
if it be higher, the true pressure-

head is hi di. Then the velocity-head v
2
/2g is to be measured

upward from the tip of the nozzle.

The theorem of Bernouilli, given in Art. 31, is true for inclined

as well as for horizontal pipes under uniform flow, but it will be

convenient to express it

in a slightly different

form. Let ai and <h be

two sections of a pipe

where the velocities are

Vi and vz ,
and the pres-

sure-heads are hi and 7;2 ,

and let the flow be steady

so that the same weight
of water, W, passes each section in one second. Let MN be

any horizontal plane lower than the lowest section, as for in-

stance the sea level, and let d and e2 be the elevations of at

Fig. 85.
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and J2 above it. With respect to this plane the weight W at </i

has the potential energy We\ y
the pressure-energy Wh\, and the

kinetic energy W v\*/2g, or the total energy is

Similarly with respect to this plane the energy of W in a2 is

2g

If no losses of energy occur between the two sections, these

expressions are equal, and hence

ei + i +^-e2 + ^ +^ (85)i
2g 2g

and hence the theorem of Bernoulli may be stated as follows :

In any pipe, under steady flow without impact or friction, the

gravity-head plus the pressure-head plus the velocity-head is a con-

stant quantity for every section.

Now let #1 and #2 be the heights of the water levels in the piezom-

eter tubes above the datum plane ;
then e\ + h\ = HI and e% + hz

= HZ, and accordingly (85) i becomes

#! +^ = #2+^ (85)2

2g 2g

or, the piezometer elevation for a\ plus the velocity-head is equal

to the sum of the corresponding quantities for any other section.

This theorem belongs to theoretical hydraulics, in which

frictional resistances are not considered. Under actual conditions

there is always a loss of energy or head, so that when water flows

from a\ to o2 ,
the first member of the above equation is larger than

the second. Let Wh' be the loss in energy, then this is equal to

the difference of the energies in a\ and o2 with respect to the

datum plane, and

* r

-(*tW-(*+*)+fl!-a
2g 2g

or A'=ffi-T2 +^-^ (85),
2g 2g
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that is, the lost head is equal to the difference in level of the water

surfaces in the piezometer tubes plus the differences of the veloc-

ity-heads. When the pipe is of the same size at the two sections,

the velocities vi and % are equal when the flow is uniform, and

the lost head is simply
h

f =H,-H2 (85) 4

Piezometers or pressure gages hence furnish a very convenient

method of determining the head lost in friction in a pipe of uni-

form size. For a pipe of varying section the velocities vi and v2

must also be known, in order to use (85)s for finding the lost head.

Prob. 85. A large Venturi water meter placed in a pipe of 57.823 square

feet cross-section had an area of 7.047 square feet at the throat. When
the discharge was 54.02 cubic feet per second, the elevations of the water

levels in the piezometers at a\ and a2 in Fig. 38a were 99.858 and 98.951

feet. Compute the loss of head between the two sections.

ART. 86. VELOCITIES IN A CROSS-SECTION

Thus far the velocity has been regarded as uniform over the

cross-section of the tube or pipe. On account of the roughness

of the surface, however, the velocity along the surface is always

smaller than that near the middle of the cross-section. There

appears to be no theoretical method of finding the law which

connects the velocity of a filament with its distance from the

center of the pipe, and yet it is probable that such a law exists.

The mean velocity is evidently greater than the velocity at the

surface and less than the velocity at the middle, and if the position

of a filament were known whose velocity is the same as the mean

_^ B velocity, a Pitot tube (Art. 41) with its tip

"\ at that position would directly measure

6?p -\D the mean velocity.

!

:

^- Let Fig. 86a be a longitudinal section

of a pipe, and let AB be laid off to repre-

sent the surface velocity vs and CD to represent the central ve-

locity ve . Then the velocity v at any distance y from the axis

will be an abscissa parallel to the axis and limited by the line AC
and the curve BD. Suppose this curve to be a parabola whose
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equation is y*
= mx, the origin being at D and x measured

toward the left. When y is equal to the radius of the pipe r, the

value of x is ve
-

v. and hence m = r2/(ve .). The velocity

vv at the distance y above the axis is vc x, and accordingly

It thus is seen that the velocity at any distance from the axis

cannot be found unless the surface and central velocities are

known- The position of the filament having the same velocity

as the mean velocity v can, however, be determined, since the

mean velocity is the mean length of the solid of revolution whose

section is shown by the broken lines. This solid consists of a

cylinder having the volume 7rr\ and a paraboloid having the

volume %Trr
2
(vc fl), and the sum of these is %Trr

2
(vc + %). Divid-

ing this by the area of the cross-section gives J(z>c + v) as the

value of the mean velocity, and inserting this for vy in the above

equation there is found y =
0.7 ir for the ordinate of a filament

whose velocity is the same as mean velocity v. If the parabolic

curve gives the true law of variation of velocity, a Pitot tube

with its Up placed o.2gr below the top of the pipe would measure

the mean velocity directly.

The first measurements of velocities of filaments were made by
Freeman in 1888 with the Pitot tube.* They were on jets issuing

from fire nozzles and also from a if-inch tube under high velocities.

For smooth nozzles the velocities were practically constant for

a distance of o.6r from the center, and then rapidly decreased,

and the ratio of the surface velocity to the central velocity was

about 0.77. For the pipe the velocities decreased quickly near

the center, but more rapidly toward the surface. The velocity

curve for the nozzle lies outside and that for the pipe lies within

the parabolic curve represented by the equation (86)1.

Bazin made experiments in 1893 on jets from standard ori-

fices, using also the Pitot tube.f He found the velocities near the

center to be smaller than others within o.2r of the surface. Thus

* Transactions American Society of Civil Engineers, 1889, vol. 21, p. 412.

t 'Experiments on the Contraction of the Liquid Vein. Trautwine's

translation, New York, 1896.
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if vy
= c ~\^2gh, the following are some of his values of c for a ver-

tical circular and a vertical square orifice, h being always the head

on the center.

r = + o.8 + 0.6 +0.2 o.o 0.2 0.6 0.8

c = 0.68 0.64 0.62 0.63 0.64 0.72 0.86

c= 0.71 0.67 0.64 0.64 0.65 0.71 0.82

These are for velocities in the plane of the orifice, and he found

similar variations for a section of the jet at a distance from the

orifice of about one-half its diameter.

Judd and King,* in their experiments on orifices (Art. 45),

traversed the jets with a Pitot tube and found that at the con-

tracted section the velocity in all parts of the jet was uniform.

Cole, in 1897, made measurements of velocities in pipes, f

using the Pitot tube with a differential gage (Art. 37). For

pipes 4, 6, and 12 inches in diameter he found the ratio of the mean

velocity to the center velocity to range from 0.91 to i.oi, while

for a 1 6-inch pipe he found it to range from 0.83 to 0.86. His

velocity curves show that the surface velocity was 60 percent or

more of the center velocity.

Williams, Hubbell, and Fenkell, in 1899, made numerous

measurements of velocities in water mains with the Pitot tube,

and arrived at the conclusions that the ratio of the mean velocity
to the central velocity was about 0.84, and that the surface velocity

was about one-half the central velocity.! These ratios agree with

an ellipse better than with a parabola. Let the curve BD in Fig.

86a be an ellipse having the semi-axes ED and BE, the ellipse

being tangent to the pipe surface at B. As before, let AB repre-
sent the surface velocity va and CD the central velocity vc ;

then

ED is vc
-

v, and BE is the radius r. The equation of the ellipse

with respect to E as an origin is

*
Engineering News, Sept. 27, 1906.

f Transactions American Society of Civil Engineers, 1902, vol. 47, p. 276.

J Transactions American Society of Civil Engineers, 1902, vol. 47, p. 63.
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in which x is measured toward the right and y upward. The

velocity ? at any distance y from the axis CD is v, + x, and

accordingly vv
=

v, + (vc
-

v.) V i
-
//r

2
(86),

Now the mean velocity is the mean length of the solid of revolu-

tion formed by the cylinder whose volume is Trrfy and the semi-

ellipsoid whose volume is f 7rr
2
(z>c vt). The volume of the solid

is hence 7rr
2
( ve + 3 vt) and the mean velocity is f vc -f 5 vt . Insert-

ing this for vv in (86)2, there is found y =
0.7 $r for the position of

the filament having the same velocity as the mean velocity, while

the parabola gave y o.jir. If z>. is one-half of ve ,
the mean

velocity under the elliptic law is f ve + J = 0.83^, while under

the parabolic law it is %vc -+- Jfl.
=

0.75^.

Much irregularity is observed in velocity curves plotted from

actual measurements, this being due to pulsations in the water

and
'

to errors of observations. The above experiments were

on pipes having diameters of 12, 16, 30, and 42 inches and under

velocities ranging from 0.5 to 7.5 feet per second; and they are

a very valuable addition to the knowledge of this subject. The

conclusion that v, is one-half of vc is, however, one that appears to

be liable to some doubt. The conclusion that the mean velocity

v is about 0.84^ appears well established, and a Pitot tube with

its tip at the center of the pipe will hence determine a fair value

of the mean velocity, several readings being taken in order to

eliminate errors of observation.

} 7 8 9 10 11 12

Velocity iu Feet per Second

Fig. 866.

14 13 16 17

In the case of fountain flow (Art. 87), Lawrence and Braun-

worth * found that the velocities in the cross-section depend on

whether or not the flow out of the top of the pipe occurs as in a

* Transactions American Society of Civil Engineers, vol. 57.
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jet or as over a weir. Thus, in Fig. SQb the velocity curves for a

vertical 6-inch cast-iron pipe are shown for velocities ranging from

2 to 1 7 feet per second. These velocities were obtained from the

expression v = ^/2gh, where h was measured by a Pitot tube.

Prob. 86. Let vs = 3 and ve = 6 feet per second. Plot the parabola

from formula (86)1 and the ellipse from formula (86) 2 .

ART. 87. FOUNTAIN FLOW

When a stream of water rises and flows out of the top of a

vertical pipe of diameter D, the flow, if the head H to which it rises

above the top of the pipe is small, is practically the same as that

over a thin-edged circular weir. As H increases there comes a

transition period during which the character of the flow resembles

neither that over a circular weir nor that of a jet. Lawrence and

Braunworth *
experimented on the fountain flow of water from

pipes 2, 4, 6, 9, and 12 inches in diameter. They measured the

heads H both by means of a Pitot tube and by sighting on two

rods and across the top of the pipe. The water discharged during
the experiments was measured volumetrically. From the dis-

cussion of these experiments the following formulas were deduced :

the first being for weir and the second for jet flow. Here D and H
are in feet and q in cubic feet per second, H being measured by
means of sighting across the top of the flow as above described.

For cases in which the head H is measured with a Pitot tube

the formulas deduced were

q
= 8.80 D12 H129 and q

=
5.84 Z)2

-025^ -53

the first of these, as before, being applicable to weir and the sec-

ond to jet flow.

In general the average results given by these formulas are

correct within 3 percent for the jet condition, while for the condi-

tion of the weir flow using the Pitot tube for the measurement
of the head the average accuracy is within 4 percent. Single

*
Transactions American Society of Civil Engineers, vol. 57, p. 209.
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measurements cannot be depended upon closer than to within

about twice the above limits of accuracy.

In the following table are shown the computed discharges in

cubic feet per second for various sizes of pipes under various

heads, the heads being observed by means of a Pitot tube.

TABLE 87. DISCHARGES IN CUBIC FEET PER SECOND FOR

FOUNTAIN FLOW "FROM VERTICAL PIPES

Head
in

Feet
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By equating the second members of these equations the critical head

at which the nature of the flow changes is found to be about 0.6 D for

all values of H between o.i and 3.0 feet. Practically, however, the

exact point at which the change occurs cannot be exactly determined.

Prob. 87. Compute the flow from a vertical pipe 14 inches in diameter

when the head above the top of the pipe, as measured by a Pitot tube, is

0.04 feet. Also compute the discharge when the head is 7.6 feet.

ART. 88. COMPUTATIONS IN METRIC MEASURES

Nearly all the formulas of this chapter are rational and may be

used in all systems of measures. In the metric system lengths are to

be taken in meters, areas in square meters, velocities in meters per

second, discharges in cubic meters per second, and using for the accel-

eration constants the values given in Table 9c.

(Art. 83) The coefficients of discharge and velocity for smooth

fire nozzles 2.0, 2.5, 3.0, and 3.5 centimeters in diameter are 0.983,

0.972, 0.973, and 0-959, respectively. In using the formula (83 ) 2

the values of d and hi should be taken in meters, but in finding the

ratio D/d the values of D and d may be in centimeters or any other

convenient unit. The constant g being 9.80 meters per second, the

discharge q will be in cubic meters per second. When it is desired to

use the gage reading pi in kilograms per square centimeter and to

take D in centimeters, the formula

may be used for finding the discharge in liters per minute.

Prob. 88<z. Compute the loss of head which occurs when a pipe, dis-

charging 18.5 cubic meters per second, suddenly enlarges in diameter from

1.25 to 1.50 meters.

Prob. 886. Find the coefficient of discharge for a tube 8 centimeters

in diameter when the flow under a head of 4 meters is 18.37 cubic meters in

5 minutes and 15 seconds.

Prob. 88c. Compute the discharge from a smooth nozzle 2.5 centimeters
in diameter, attached to a hose 7.5 centimeters in diameter, when the pres-
sure at the entrance is 5.2 kilograms per square centimeter.
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CHAPTER 8

FLOW OF WATER THROUGH PIPES

ART. 89. FUNDAMENTAL IDEAS

Pipes made of clay were used in very early times for convey-

ing water. Pliny says that they were two digits (0.73 inches) in

thickness, that the joints were filled with lime macerated in oil,

and that a slope of at least one-fourth of an inch in a hundred

feet was necessary in order to insure the free flow of water.* The

Romans also used lead pipes for conveying water from their aque-

ducts to small reservoirs and from the latter to their houses.

Frontinus gives a list of twenty-five standard sizes of pipes, f

varying in diameter from 0.9 to 9 inches, which were made by

curving a sheet of lead about ten feet long and soldering the

longitudinal joint; The Romans had confused ideas of the laws

of flow in pipes, their method of water measurement being by
the area of cross-section, with little attention to the head or pres-

sure. They knew that the areas of circles varied as the squares

of the diameters, and their unit of water measurement was the

quinaria, this being a pipe i J digits in diameter
;
then the denaria

pipe, which had a diameter of 2\ digits, was supposed to deliver

4 quinarias of water.

In modern times lead pipes have also been used for house

service, but these are now largely superseded by either iron pipes

or iron pipes lined with lead or tin. For the mains of city water

supplies cast-iron pipes are most common, and since 1800 steel-

riveted pipes have come into use for large sizes. Lap-welded

wrought-iron or steel pipes are used in some cases where the pres-

sure is very high, and large wooden stave pipes are in use in the

western part of the United States.

* Natural History, book 31, chapter 31, line 5.

t Herschel, Water Supply of the City of Rome (Boston, 1899), P- 36-
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The simplest case of the flow of water through a pipe is that

where the diameter of the pipe is constant and the discharge occurs

entirely at the open end. This case will be discussed in Arts.

90-99, and afterwards will be considered the cases of pipes of

varying diameter, a pipe with a nozzle at the end, and pipes with

branches. Most of the principles governing the simple case

apply with slight modification to the more complex ones. Pipes

used in engineering practice range in diameter from J inch up to

10 feet or more.

The phenomena of flow for this common case are apparently

simple. The water from the reservoir, as it enters the pipe, meets

with more or less resistance, depending upon the manner of con-

necting, as in tubes (Art. 80). Resistances of friction and cohe-

Fig. 89a. Fig. 896.

sion must then be overcome along the interior surface, so that the

discharge at the end is much smaller than in the tube (Art. 84).

When the flow becomes steady, the pipe is entirely filled through-
out its length ;

'and hence the mean velocity at any section is the

same as that at the end, since the size is uniform. This velocity

is found to decrease as the length of the pipe increases, other

things being equal, and becomes very small for great lengths,

which shows that nearly all the head has been lost in overcoming
the resistances. The length of the pipe is measured along its

axis, following all the curves, if there be any. The velocity con-

sidered is the mean velocity, which is equal to the discharge di-

vided by the area of the cross-section of the pipe. The actual

velocities in the cross-section are greater than this mean near the

center and less than it near the interior surface of the pipe, the

law of distribution being that explained in Art. 86.

The object of the discussion of flow in pipes is to enable the

discharge which will occur under given conditions to be deter-
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mined, or to ascertain the proper size which a pipe should have

in order to deliver a given discharge. The subject cannot, how-

ever, be developed with the definiteness which characterizes the

flow from orifices and weirs, partly because the condition of the

interior surface of the pipe greatly modifies the discharge, partly

because of the lack of experimental data, and partly on account

of defective theoretical knowledge regarding the laws of flow.

In orifices and weirs errors of two or three percent may be re-

garded as large with careful work
;

in pipes such errors are com-

mon, and are generally exceeded in most practical investigations.

It fortunately happens, however, that in most cases of the design

of systems of pipes errors of five and ten percent are not impor-

tant, although they are of course to be avoided if possible, or,

if not avoided, they should occur on the side of safety.

The head which causes the flow is the difference in level from

the surface of the water in the reservoir to the center of the end,

when the discharge occurs freely into the air as in Fig. 890. If

h be this head, and W the weight of water discharged per second,

the theoretic potential energy per second is Wh\ and if v be the

actual mean velocity of discharge, the kinetic energy of the dis-

charge is W v2/2g. The difference between these is the energy

which has been transformed into heat in overcoming the resist-

ances. Thus the total head is h, the velocity-head of the out-

flowing stream is v
2
/2g, and the lost head is h v

2
/2g. If the

lower end of the pipe is submerged, as in Fig. 89, the head h is

the difference in elevation between the two water levels.

The total loss of head in a straight pipe of uniform size con-

sists of two parts, as in a long tube (Art. 84). First, there is a

loss of head h
r due to entrance, which is the same as in a short

cylindrical tube, and secondly there is a loss of head h" due to

the frictional resistance of the interior surface. The loss of head

at entrance is always less than the velocity-head and in this

chapter it will be expressed by the formula

ti = m (89)i
H

in which m is 0.93 for the inward projecting pipe, 0.49 for the
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standard end, and o for a perfect mouthpiece, as shown in Art. 84.

When the condition of the end is not specified, the value used for

m will be 0.5, which supposes that the arrangement is like the

standard tube, or nearly so. For short pipes, however, it may
be necessary to consider the particular condition of the end, and

then m is to be computed from

m =
(i/cl)

2 -i (89) 2

in which the coefficient c\ is to be selected from the evidence pre-

sented in the last chapter.

It should be noted that the loss of head at entrance is very
small for long pipes. For example, it is proved by actual gagings

that a clean cast-iron pipe 10 ooo feet long and i foot in diameter

discharges about 4! cubic feet per second under a head of 100 feet.

The mean velocity then is, if q be the discharge and a the area of

the cross-section,

v== 9_ = 4- 2 5 =5.41 feet per second,
a 0.7854

.and the probable loss of head at entrance hence is

ti = 0.5 X 0.01555 X 54i
2 =

0.23 feet,

or only one-fourth of one per cent of the total head. In this case

the effective velocity-head of the issuing stream is only 0.45 feet,

which shows that the total loss of head is 99.55 feet, of which

99.32 feet are lost in friction.

Prob. 89. Under a head of 20 feet a pipe i inch in diameter and 100

feet long discharges 15 gallons per minute. Compute the loss of head at

entrance.

ART. 90. Loss OF HEAD IN FRICTION

The loss of head due to the resisting friction of the interior

surface of a pipe is usually large, and in long pipes it becomes very

great, so that the discharge is only a small percentage of that due

to the head. Let h be the total head on the end of the pipe where

the discharge occurs, v
2
/2g the velocity-head of the issuing stream,

h' the head lost at entrance, and h" the head lost in friction. Then
if the pipe is straight, so that no other losses of head occur,
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Inserting for the entrance-head //' its value from Art. 89, this

equation becomes
^2 /f ^

h = m h h H-

2g 2g

which is a fundamental formula for the discussion of flow in

straight pipes of uniform size.

The head lost in friction may be determined for a particular

case by measuring the head h, the area a of the cross-section of

tin- pipe, and the discharge per second q. Then q divided by a

gives the mean velocity v, and from the above equation, inserting

for m its value from (89)2 ,
there is found

which serves to compute h", the value of c\ being first selected

according to the condition of the end. This method is not a good
one for short pipes because of the uncertainty regarding the co-

efficient c\ (Art. 84), but for long pipes it gives precise results.

Another method, and the one most generally employed, is by
the use of piezometers (Art. 85). A portion of the pipe being

selected which is free from sharp curves, two piezometer tubes are

inserted into which the water rises, or the pressure-heads are

measured by gages (Art. 36) . The difference of level of the water

surfaces in the piezometer tubes is then the head lost in the pipe

between them (Art. 85), and this loss is caused by friction alone

if the pipe be straight and of uniform size.

\\\ these methods many observations have been made upon

pipes of different sizes and lengths under different velocities of

flow, and the discussion of these has enabled the approximate
laws to be deduced which govern the loss of head in friction, and

tables to be prepared for practical use. These laws are :

1. The loss of head in friction is directly proportional to the

length of the pipe.

2. It is inversely proportional to the diameter of the pipe.

3. It increases nearly as the square of the velocity.

4. It is independent of the pressure of the water.

5. It increases with the roughness of the interior surface.
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These five laws may be expressed by the formula

"
(90)

in which / is the length of the pipe, d its diameter,/ is an abstract

number which depends upon the degree of roughness of the sur-

face, and v
2
/2g is the velocity-head due to the mean velocity.

This formula may be justified by reasonings based on the

assumption that what has been called the loss in friction is really

caused by impact of the particles of water against each other.

Fig. 90 represents a pipe with the roughness of its surface enor-

mously exaggerated and imperfectly

shows the disturbances v thereby

caused. As any particle of water

strikes a protuberance on the surface,

it is deflected and its velocity dimin-

ished, and then other particles of water in striking against it also

undergo a diminution of velocity. Now in this case of impact the

resisting force F acting over each square unit of the surface is to

be regarded as varying with the square of the velocity (Arts. 27

and 76). The total resisting friction for a pipe of length/ and

diameter d is then irdlF, and the work lost in one second is dl^Fv.

Let W be the weight of water discharged in one second, then

Wh" is also the energy lost in one second. But W =
wq, if w be

the weight of a cubic unit of water and q the discharge per second,

and the value of q is \TT^D. Then, equating the two expressions

for the lost energy, and replacing F by Cv* where C is a constant,

there results .
7 r /

h = 4LF= 4CL v
i

wd w d

Now C must increase with the roughness of the surface and hence

this expression is the same in form as (90), and it agrees with the

five laws of experience.

Values of h" having been found by experiments, in the manner
described above, values of the quantity / can be computed. In

this way it has been found that / varies not only with the rough-
ness of the interior surface of the pipe, but also with its diameter,
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and with tin- velocity of flow. From the discussions of Fanning,

Smith, and others, the mean values of / given in Table 90a have

beencompiled, which arc applicable to clean cast-iron and wrought -

iron pipes, cither smooth or coated with coal-tar, and laid with

dose joints.

TABLE 90j. FRICTION FACTORS FOR CLEAN IRON PIPES

Diameter

in

Feet
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To determine, therefore, the probable loss of head in friction,

the velocity v must be known, and/ is taken from Table 9(k for

the given diameter of pipes. The formula (90) then gives the

probable loss of head in friction. For example, let / = 10 ooo

feet, d = i foot, v = 5.41 feet per second. Then from Table 90a

the factor /is 0.021, and

h" = 0.021 X^-^ X 0.455 = 95-5 feet,
i

which is to be regarded as an approximate value, liable to an

uncertainty of 5 percent.

TABLE 906. FRICTION HEAD FOR 100 FEET OF CLEAN IRON PIPE

Diameter
in

Feet
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I 'rob. 90. Determine the actual loss of lu-ad in friction from the fol-

lowing experiment : / = 60 feet, h = 8.33 feet, d = 0.0878 feet, q 0.03224
cubic feet per second, and c 0.8. Compute the probable loss for the same
data from formula (90) and also from Table 906.

ART. 91. Loss OF HEAD IN CURVATURE

Thus far the pipe has been regarded as straight, so that no

losses of head occur except at entrance and in friction. But

when the pipe is laid on a curve, the water suffers a change in

direction whereby an increase of .pressure is produced in the

direction of the radius of the curve and away from its center

(Art. 156). This increase in pressure causes eddying motions of

the water, from which impact results and energy is transformed

into heat. The total loss of head h"' due to any curve evidently

increases with its length, and should be greater for a small pipe

than for a large one. Hence the loss of head due to the curvature

of a pipe may be written

V *""''<*
in which / is the length of the curve, d the diameter of the pipe,

v the mean velocity of flow, and /i is an abstract number called

the curve factor, that depends upon the ratio of the radius of the

curve to the diameter of the pipe. Let R be the radius of the

circle in which the center line of the pipe is laid. Then, if R is

infinity, the pipe is straight and f\
= o

;
but as the ratio R d

decreases, the value of /i increases.

There are few experiments from which to determine the values

of /i. Weisbach, about 1850, from a discussion of his own ex-

periments and those of Castel, deduced a formula for the value of

fil/d for curves of one-fourth of a circle,* and from this the follow-

ing values of the curve factor /i have been computed :

forR/d= 20 10 5 3 2 1.5 i.o

/i
= 0.004 0.008 0.016 0.030 0.047 0.072 0.184

These values of f\ are applicable only to small smooth iron pipes

where the entire curve is without joints, since most of the pipes

* Die Experimentale Hydraulik (Freiberg, 1855), p. 159. Mechanics

of Engineering (New York, 1870), vol. i, p. 898.
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on which the above experiments were made were probably of

this kind.

Freeman, in 1889, made measurements of the loss of head in

fire hose 2.49 and 2.64 inches in diameter, and the curves were

complete circles of 2, 3, and 4 feet radius.* From the results

given for the smaller hose the following values of the curve fac-

tor /i have been found :

for R/d = 19.2 14.4 9.6

/!= 0.0033 0.0034 0.0048

while for the larger hose the values are

iorR/d= 16.2 13.6 8.1

fi
=

0.0036 0.0046 0.0045

These values are in fair agreement with those given above for the

small iron pipes.

Williams, Hubbell, and Fenkell, in 1898 and 1899, made meas-

urements in Detroit on cast-iron water mains having curves of

90. From their results for a 30-inch pipe the values of the curve

factor/! have been computed and are found to be as follows :

tor R/d = 24 16 10 6 4 2.4

/i
=

0.036 0.037 0.047 0.060 0.062 0.072

while from their work on a 1 2-inch pipe the values are

for R/d =4 3 2 i

/i
=

0.05 0.06 0.06 0.20

Of these values, those derived from the larger pipe are the most

reliable, and it is seen that they are much greater than the values

deduced from Weisbach's investigations on small pipes. Prob-

ably some of this increase is due to the circumstance that the

curves had rougher surfaces and that the joints were nearer to-

gether than on the straight portions. These experiments- f were

made with the Pitot tube in the manner explained in Arts. 41 and

86. They show that the law of distribution of the velocities in

the cross-section is quite different from that for a straight pipe,

Transactions American Society of Civil Engineers, 1889, vol. 21, p. 363.

f Transactions American Society of Civil Engineers, 1902, vol. 47.
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the maximum velocity being not at the center, but between the

center and the outside of the curve.

From the experiments of Schoder,* on 6-inch pipe and bends

of 90, the following values of/ have been computed for velocities

of 5 and 16 feet per second:

for R/d= 20 15 10 6 5 2

v= 5, /i
= 0.008 0.004 o.oio 0.020 0.018 0.049

2=16, /i= 0.008 0.009 o.on 0.021 0.022 0.059

The data given by Davis,* from his experiments on pipe about

2 TV inches in diameter for bends of 90, enable the following values

of/i to be computed for velocities of 5 and 15 feet per second:

for R/d = 10 6 5 4 2 i

v= 5, /i
=

0.023 0.024 0.027 0.032 0.081 0.323

2=15, /!= 0.027 0.051 0.052 0.058 0.144 -394

From the experiments of Brightmore,f on pipes 4 inches in

diameter qnd for bends of 90, the values of /i given below have

been computed for velocities of 5 and 10 feet per second:

for R/d = 10 6 5 42 i

v= 5< /i
=

-0l 3 0-033 -34 0.036 0.105 0.406

v=io, fi= 0.013 -34 0.040 0.046 0.127 0-3^5

While the above values of /i are few in number, and not wholly
in accord, yet they may serve as a basis for roughly estimating

the loss of head due to curvature. For example, let there be

two curves of 24 and 16 feet radius in a pipe 2 feet in diameter,

each curve being a quadrant of a circle. The ratios R/d are 12

and 8, and the values of /i, taken from those deduced above from

the large Detroit pipe, are 0.044 and 0.053. The lengths of the

curves are 37.7 and 25.1 feet, and then from (91 )i

0.044
4"-t = -3

2 2g 2g

=o.66
2 2g 2g

*
Transactions American Society of Civil Engineers, vol. 52.

t Proceedings Institution of Civil Engineers, vol. 169.
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are the losses of head for the two cases. Here it is seen that the

easier curve gives the greater loss of head. By the use of the

values of/i deduced from Weisbach's investigation, the loss of head

is much smaller and the sharper curve gives the greater loss of

head, since the coefficients of the velocity-head are found to be

0.13 and 0.14 instead of 0.83 and 0.66. The subject of losses in

curves is, indeed, in an uncertain state, since sufficient experiments

have not been made either to definitely establish the validity of

(91 )i or to determine authoritative values of the curve factor /i.

Probably it will be found that/i varies with the diameter d as well

as with the ratio R/d.

When there are several curves in a pipe line, the value oi]i(l/d)

for each curve is to be found and then these are to be added in

order to find the total loss of head. Thus, in general,

ti" = m1
^-

(91),
2

is the total loss of head, in which mi represents the sum of the

values of fi(l/d) for all the curves. It must be remembered,

however, that this loss of head is occasioned by the fact that the

pipe is curved and that it is to be added to the loss caused by
friction along the entire length of the pipe. In other words the

curve factor /i does not include the friction factor /.

The lost head due to curvature in a pipe line is usually low

compared with that lost in friction, since the number of curves

is usually made as small as possible. For example, take a pipe
1000 feet long and 3 inches in diameter, which has ten curves, five

being of 90 and 6 inches radius and five being of 57.3 and 5 feet

radius. From (90), using 0.02 for the mean friction factor, the

loss of head in friction is 80 v
2
/2g. From (91)i, using the curve

factors deduced from Weisbach, the loss of head for the five sharp
curves is 0.74 v2/2g, and that for the five easy curves is 0.4 v*/2g.

Prob. 91. If the central angle of a curve of 18 inches radius is 57-3,
what is the length of the curve? If a hose, i\ inches in diameter, is laid

on this curve, compute the loss in head due to curvature when the velocity
in the hose is 30 feet per second and also when it is 15 feet per second.
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ART. 92. OTHER LOSSES OF HEAD

Thus far the cross-section of the pipe has been supposed to be

constant, so that no losses of head occur except at entrance (Art.

89), in friction (Art. 90), and in curvature (Art. 91). But if the

pipe contains valves, or has obstructions in its cross-section, or is

of different diameters, other losses occur which are now to be

considered.

The figures show three kinds of valves for regulating the flow

in pipes : A being a valve consisting of a vertical siiding-gate,

B a cock-valve formed by two rotating segments, and C a throttle-

valve or circular disk which moves like a damper in a stovepipe.

Fig. 92.

The loss of head due to these may be very large when they are

sufficiently closed so as to cause a sudden change in velocity. It

may be expressed by

in which m has the following values, as determined by Weisbach

from his experiments on pipes of small diameter.* For the gate-

valve let d' be the vertical distance that the gate is lowered below

the top of the pipe ;
then

lord'/d = o i 1 I i I I i

m = o.o 0.07 0.26 0.81 2.1 5.5 17 98

For the cock-valve let 6 be the angle through which it is turned,

as shown at B in Fig. 92
;
then

for 6 = o 10 20 30 40 50 55 60

m = o 0.29 1.6 5.5 17 53 106 206

In like manner, for the throttle-valve the coefficients are :

for =
5 10 20 30 40 50 60 65

^ =
0.24 0.52 1.5 3.9 ii 33 118 256

* Mechanics of Engineering, vol. i, Coxe's translation, p. 902.

65

486

70

75
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The number m hence rapidly increases and becomes very great

when the valve is fully closed, but as the velocity is then zero

there is no loss of head. The velocity v here, as in other cases,

refers to that in the main part of the pipe, and not to that in the

contracted section formed by the valve.

Kuichling's experiments
* on a gate-valve for a 24-inch pipe

give values of m which are somewhat greater than those deduced

by Weisbach from pipes less than 2 inches in diameter. Con-

sidering the great variation in size, the agreement is, however,

a remarkable one. He found

m = o.S 1.6 3.3 8.6 22.7 41.2

and his computed value of m when d'/d equals f is 75.6.

An accidental obstruction in a pipe may be regarded as causing

a contraction of section, followed by a sudden expansion, and the

loss of head due to it is, by Art. 76,

//'"- ( a
'

r\
2
v
2

- &
"

L

~~ T m~

where a is the area of the section of the pipe, and a' that of the

diminished section. This formula shows that when a' is one-

half of fl, the loss of head is equal to the velocity-head, and that

m rapidly increases as a' diminishes. The same formula gives

the loss of head due to the sudden enlargement of a pipe from the

area a' to a.

Air-valves are placed at high points on a pipe line in order to

allow the escape of air that collects there. Mud-valves or blow-

offs are placed at low points in order to clean out deposits that may
be formed as well as to empty the pipe when necessary. These
are arranged so as not to contract the section, and the losses of

head caused by them are generally very small. When a blow-

off pipe is opened and the water flows through it with the velocity

v, the loss of head at its entrance, even when the edges are rounded,
is as high as or higher than 0.56 v

2
/2g, according to the experi-

ments of Fletcher.

* Transactions American Society of Civil Engineers, 1892, vol. 26, p. 449.
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In the following pages the symbol //"" will be used to denote

the sum of all the losses of head due to valves and contractions of

section. Then
,, = n^ (92)

2

in which w2 will denote the sum of all the values of m due to these

causes. In case no mention is made regarding these sources of

loss they are supposed not to exist, so that both m* and //"" are

simply zero.

Prob. 92. Which causes the greater loss of head in a 24-inch pipe,

a gate-valve one-half closed, or five 90 curves of 16 feet radius ?

ART. 93. FORMULA FOR MEAN VELOCITY

The mean velocity in a pipe can now be deduced for the con-

dition of steady flow. The total head being h, and the effective

velocity-head of the issuing stream being v2/2g, the lost head is

// v-/2fr and this must be equal to the sum of its parts, or

Substituting in this the values of the four lost heads, as de-

termined in the four preceding articles, it becomes

2g 2g d 2g 2g 2g

and by solving for v there is found

* = J-r-a
, .?:. 03),

T m
which is the general formula for the mean velocity in a pipe of

constant cross-section.

The most common case is that of a pipe which has no curves,

or curves of such large radius that their influence is very small,

and which has no partially closed valves or other obstructions.

For this case both m\ and nh are zero, and, taking m as 0.5, the

formula becomes

2gh

i.

which applies to the great majority of cases in engineering practice.
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In this formula the friction factor / is a function of v to be

taken from Table 90#, and hence v cannot be directly computed,

but must be obtained by successive approximations. For exam-

ple, let it be required to compute the velocity of discharge from

a pipe 3000 feet long and 6 inches in diameter under a head of 9

feet. Here / = 3000, d =
0.5, and h = 9 feet, and taking for

/ the rough mean value 0.02, formula (93) 2 gives

_
*

32.16

1 .5 + O.O2 X 3OOO X 2

The approximate velocity is hence 2.2 feet per second and enter-

ing the table with this, the value of/ is found to be 0.026. Then

the formula gives

/ 2 X ^2.16 X o t
i)
= \

- - = i .92 feet per second.
\ i. 5 + 0.026X3000X2

This is to be regarded as the probable value of the velocity, since

the table gives / = 0.026 for v = 1.92. In this manner by one

or two trials the value of v can be computed so as to agree with

the corresponding value of /.

To illustrate the use of the general formula (93) i let the pipe
in the above example be supposed to have forty 90 curves

of 6 inches radius, and to contain two gate-valves which are half

closed. Then from Arts. 91 and 92 there are found mi = n.6
for the curves and m^ = 4.2 for the gates. The mean velocity

then is
/

/_2X32.16X9 , j
v = \ - =

1.83 feet per second,V 1 7.3 +0.026X6000

whicfi is but a trifle less than that found before. With a shorter

pipe, however, the influence of the curves and gates in retarding
the flow would be more marked.

The head required to produce a given velocity v can be ob-

tained from (93) i or (93) 2 . Thus from the general formula the

required head is

in which for common computations m =
0.5, while mi and m^ are

neglected.



Computation of Discharge. Art. 94 227

The error in the computed velocity due to an error of one unit

in the last decimal of the friction factor/ is always relatively less than

the error in / itself. For instance, where v is computed for the above

example- with / = 0.025, which is 4 percent less than 0.026, its

value is found to be 1.96 feet per second, or 2 percent greater than

1.1)2. In general the percentage of error in v is less than one-half

of that in /. It hence appears that computed velocities are liable

to probable errors ranging from i to 5 percent, owing to imperfections

in the tabular values of / for new clean pipes. This uncertainty
is as a rule still further increased by various causes, so that 5 per-

cent is to be regarded as a common probable error in
'

computations
of velocity and discharge from pipes.

Velocities greater than 15 feet per second are very unusual in

pipes, and but little is known as to the values of / for such cases. For

velocities less than 0.5 feet per second, the values of/are also not known

(Art. llJiX so that only a rough reliance can be placed upon computa-
tions. The usual velocity in water mains is less than five feet per

second, it being found inadvisable to allow swifter flow on account

of the great loss of head in friction.

Prob. 93. Using for / the mean value 0.02 compute the head required

to cause a velocity of 10 feet per second in a pipe 15 ooo feet long and 18

inches in Diameter.

ART. 94. COMPUTATION OF DISCHARGE

The discharge per second from a pipe of given diameter is

found by multiplying the velocity of discharge by the area of the

cross-section of the pipe, or

q
=

lir<Pv
=
0.7854 (Po (94)

in which v is to be found by the method of the last article.

For example, let it be required to find the discharge in gallons

per minute from a clean pipe 3 inches in diameter and 1500 feet

long under a head of 64 feet. Here d =
0.25, / = 1500, and h =

64 feet. Then for / = 0.02 the velocity is found from (93)2 to

be 5.82 feet per second
;
then from Table 90a is found/ = 0.024

and the velocity is 5.30 feet per second. The discharge in cubic

feet per second is

q
=

0.7854 X o.25
2 X 5.30

= 0.260
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which is equal to 116.7 gallons per minute. This is the probable

result, which is liable to the same uncertainty as the velocity, say

about 3 percent ;
so that strictly the discharge should be written

116.7 3-6 gallons per minute.

By inserting the value of v from (93)2 in the above expression

for q it becomes

and from this the head required to produce a given discharge is

*- .

These formulas are not more convenient for precise computations

than the separate expressions for v, q, and h previously estab-

lished, since v must be computed in order to select/ from the table.

For approximate computations, however, when / may be taken

as 0.02, they may advantageously be used. In the English system
of measures h and d are to be taken in feet and q in cubic feet per

second, and the constants in these two formulas have the values

JTT V2g =
6.299 8/7r

2
g
=

0.0252

The last formula shows that the head required for a pipe' of given

diameter varies directly as the square of the proposed discharge.

Thus, if a head of 50 feet delivers 8 cubic feet per second through
a certain pipe, a head of about 200 feet will be necessary in order

to obtain 16 cubic feet per second.

Prob. 94. What head is required to discharge 6 gallons per minute

through a pipe i inch in diameter and 1000 feet long ?

ART. 95. COMPUTATION OF DIAMETER

It is an important practical problem to determine the diameter

of a pipe to discharge a given quantity of water under a given
head and length. The last equation above serves to solve this

case, if the curve and valve resistances be omitted, as all the

quantities in it except d are known. This equation reduces to
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and for the English system of measures this becomes

d = 0.4789(1.Sd+ft) (95)

which is the formula for computing d when //, /, and d are in feet

and q is in cubic feet per second. The value of the friction factor

/ may be taken as 0.02 in the first instance, and thed in the right-

hand member" being neglected, an approximate value of the diam-

eter is computed. The velocity is next found by the formula

and from the Table 90a the value of / thereto corresponding is

selected. The computation for d is then repeated, placing in the

right-hand member the approximate value of d. Thus by one

or two trials the diameter is computed which will very closely

satisfyjjie given conditions.

For example, let it be required to determine the diameter

of a new pipe which will deliver 500 gallons per second, its length

being 4500 feet and the head 24 feet. Here the discharge is

q
=

500/7.481
= 66.84 cubic feet per second.

The approximate value of d then is

d = .479r
02X 45oX66.84

2
\* _

24

From this the mean velocity of flow is

v =- -- =7.6 feet per second,
0.7854 X 3 .3 5

2

and from the table the value of / for this diameter and velocity

is found to be 0.013. Then

</ = o.479 (1.5X3.35 + 0.013X4500)-
L 24 J

from which d =
3.125 feet. With this value of d the velocity

is now found to be 8.71 feet, so that no change results in the value

of/. The required diameter of the pipe is therefore 3.1 feet, or

about 37 inches
;
but as the regular market sizes of pipes furnish

only 36 inches and 40 inches, one of these must be used, and it

will be on the side of safety to select the larger.
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It is very important, in determining the size of a pipe, to also

consider that the interior surface may become rough by corrosion

and incrustation, thus increasing the value of the friction factor

and diminishing the discharge. It has been found that some

waters deposit incrustations which in a few years render the values

of / more than double those given in Table 90a. In Art. 106

will be found values of the friction factor as determined by ex-

periment on various pipes of different ages. The increase in

/ from these causes is not likely to be so great in a large pipe as in

a small one, but it is not improbable that for the above example

they might be sufficient to make/ as large as 0.03. Applying this

value to the computation of the diameter from the given data

there is found d =
3.6 feet = about 43 inches.

The sizes of iron pipes generally found in the market are ^, f, i,

ii, if, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 27, 30, 36, 40, 44, and 48 inches,

while intermediate and larger sizes must be made to order. The com-

putation of the diameter is merely a guide to enable one of these sizes

to be selected, and therefore it is entirely unnecessary that the numer-

ical work should be carried to a high degree of precision. In fact,

three-figure logarithms are usually sufficient to determine reliable

values of d from formula (95).

Prob. 95. Compute the diameter of a pipe to deliver 50 gallons per

minute under a head of 4 feet when its length is 500 feet. Also when its

length is 5000 feet.

ART. 96. SHORT PIPES

A pipe is said to be short when its length is less than about

500 times its diameter, and very short when the length is less than

about 50 diameters. In both cases the coefficient c\ should be

estimated according to the condition of the upper end as precisely

as possible, and the length / should not include the first three

diameters of the pipe, as that portion properly belongs to the tube

which is regarded as discharging into the pipe. In attempting
to compute the discharge for such pipes, it is often found that the

velocity is greater than given in Table 90a, and hence that the

friction factor / cannot be ascertained. For this reason no accu-

rate estimate can be made of the discharge from short pipes under
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high heads, and fortunately it is not often necessary to use them

in engineering constructions.

For example, let it be required to compute the velocity of

flow from a pipe i foot in diameter and 100 feet long under a head

of loo feet, the upper end being so arranged that c\ = 0.80, and

hence m =
0.56 (Art. 89). Neglecting m\ and m2 ,

since the pipe

has no curves or valves, formula (93) i for the velocity becomes

and, using for/ the rough mean value 0.02 and taking / as 97 feet,

there is found 42.9 feet per second for the mean velocity. Now
there is no experimental knowledge regarding the value of the

friction factor/ for such high velocities in iron pipes, but judging

from the^able it is probable that/ may be about 0.015. Using
this instead of 0.02 gives for v the value 46 feet per second.

The general equation for the velocity of discharge deduced in

Art. 93 may be applied to very short pipes by writing / T>d in

place of /, and placing for m its value in terms of the coefficient c\.

It then becomes

d

If in this / equals 3^, the velocity is c\ ^2gh, which is the same as

for the short cylindrical tube. If / = i2d,f = 0.02, and c\
= 0.82,

it gives v = 0.774 ~V2gh, which agrees well with the value given

by Art. 84 for this case. If / = bod, it gives v = 0.613 V2g/r,

which is 2 percent greater than the value given by Art. 84.

Prob. 96. Compute the discharge per second for a pipe i inch in diam-

eter and 40 inches long under a head of 4 feet.

ART. 97. LONG PIPES

For long pipes the loss of head at entrance becomes very small

compared with that lost in friction, and the velocity-head is also

small. Formula (93)2 for the mean velocity is

1.5+A'AO
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in which the first term in the denominator represents the effect

of the velocity-head and the entrance-head, the mean value of

the latter being 0.5. Now it may safely be assumed that 1.5

may be neglected in comparison with the other term, when the

error thus produced in v is less than i percent. Taking for /
its mean value, this will be the case when

whence =
o.02 l/d

Therefore, when / is greater than about 4000^ the pipe will be

called long.

For long pipes under uniform flow the velocity is found from

the above equation by dropping 1.5, and the discharge is found

by multiplying this mean velocity by the area of the cross-section.

Hence the formulas for velocity and discharge are

/rw\

u (97)
Jl

which for the English system of measures becomes

(97),

From these expressions for q the general and special formulas for

computing the diameter of the pipe for a given discharge, length,

and head are found to be

h J

These equations show that for very long pipes the discharge varies

directly as the 2\ power of the diameter, and inversely as the

square root of the length.

In the above formulas, d, h, and / are to be taken in feet, q

in cubic feet per second, and/ is to be found from Table 900, an

approximate value of v being first obtained by taking/ as 0.02.

It should not be forgotten that computations of discharge or

diameter from these formulas are liable to uncertainty on account

of imperfect knowledge regarding the friction factors. Especially

when the velocities are lower than one or higher than fifteen feet
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per second the results obtained can be regarded as rough estimates

only. The value of h in these formulas is really the friction-hc-ad

//", since in their deduction the other heads, h', h'"
,
and h"", 1;

been neglected as insensible. Hence when the diameter rf, the

length /, the total head h, and the discharge q have been measured

for a long pipe the friction factor/ may be computed. In this

manner much of the data was* obtained from which Table 900

has been compiled.

For circular orifices and for short tubes of equal length under

the same head, the discharge varies as the square of the diameter.

For pipes of equal length under a given head the discharges vary
more rapidly owing to the influence of friction, for formula (97)2

shows that if/ be constant, q varies as <fi. The relative discharg-

ing capacities of pipes hence vary approximately as the 2\ powers
of their diameters. Thus, if two pipes of diameters di and </2

have same length and head, and if qi and </2 be their discharges,

qi/q*
= d^/d^ or #>

=
(d*/di)*qi

For example, if there be two pipes of 6 and 12 inches diameter,

d^/di equals 2 and hence q
=

5.791, or the second pipe discharges

nearly six times as much as the first. In a similar manner it can

be shown that 32 pipes of 6 inches diameter have the same dis-

charging capacity as i pipe 24 inches in diameter.

When the variation in the friction factor is taken into account,

the formula gives

Now as the values of / vary not only with the diameter but with

the velocity, a solution cannot be made except in particular cases.

For the above example let the velocity be about 3 feet per second
;

then from the table /i
=

0.023 and/2
= 0.019, and accordingly

ft-ft(a)*(i.a)*-6.afi
or the i2-inch pipe discharges more than six times as much as the

6-inch pipe.

Prob. 97. Compute the diameter required to deliver 1 5 ooo cubic feet

per hour through a pipe 26 500 feet long under a head of 324.7 feet. If

this quantity is carried in two pipes of equal diameter, what should be their

size?
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ART. 98. PIEZOMETER MEASUREMENTS

Let a piezometer tube be inserted into a pipe at any point A
at the distance l\ from the reservoir measured along the pipe line.

Let AiDi be the vertical depth of this point below the water level

of the reservoir; then if the flow be stopped at the end C, the

water rises in the tube to the point A\. But when the flow occurs,

the water level in the pie-

zometer stands at some

point Ci, and the pressure-

head at A is hi, or CiA
in the figure. The distance

Aid then represents the

velocity-head plus all the

losses of head between A
and the reservoir. If no losses of head occur except at entrance

and in friction, the value of A\C\ then is

2g 2g d 2g

from which the piezometric height can be. found when v has been

determined by direct measurement or by gaging.

For example, let the total length / = 3000 feet, d = 6 inches,

h = 9 feet, and m =
0.5. Then, as in Art. 93, there is found

/ = 0.026 and v = 1.917 feet per second. The position of the

top of the piezometric column is then given by

Hi = (1.5 + 0.052 li) X 0.05714

and the height of that column above the pipe is

Thus if /i
= 1000 feet, HI =

3.06 feet; and if h= 2000 feet,

HI =
6.03 feet. If the pipe is so laid that AiDi is 9 feet, the cor-

responding pressure-heads are then 5.94 and 2.97 feet.

For a second piezometer inserted at D2 at the distance k from

the entrance, the value H2 is

_L J_ f--\-m --h/--
2g 2g d 2g
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Subtracting from this the expression for 7/i, there is found

ff-Fi-/kj^ (98),

The second member of this formula is the head lost in friction in

the length k l\ (Art. 90), and the first member is the difference

of the piezometer elevations. Thus is again proved the principle

of Art. 85, that the difference of two piezometer elevations shows

the head lost in the pipe between them
;

in Art. 85 the elevations

//i and 7/2 were measured upward from the datum plane, while

here they have been measured downward from the water level

in the reservoir.

By the help of this principle the velocity of flow in a pipe may
be approximately determined. A line of levels is run between

the points D\ and Z>2 ,
which are selected so that no sharp curves

occur between them, and thus the difference H2 HI is found,

while the length ^ /i is ascertained by careful chaining. Then,
from the above formula,

V =^ /(/2-/l)

from which v can be computed by the help of the friction factors

in Table 90a. For example, Stearns, in 1880, made experiments

on a conduit pipe 4 feet in diameter under different velocities of

flow.* In experiment No. 2 the length 1% l\ was 1747.2 feet,

and the difference of the piezometer levels was 1.243 feet - As-

suming for/ the mean value 0.02, and using 32.16 feet per second

per second for g, the velocity was

W^2 X 1.243 X4̂ =
3.0 feet per second.

0.02 X 1747

This velocity in the table of friction factors gives/ = 0.015 for

a 4-foot pipe. Hence, repeating the computation, there is found

v = 3.50 feet per second
;

it is accordingly uncertain whether the

value of/ is 0.015 or 0.014. If the latter value be used, there is

found v =
3.62 feet per second. The actual velocity, as deter-

mined by measurement of the water over a weir, was 3.738 feet

* Transactions American Society of Civil Engineers, 1885, vol. 14, p. 4.
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per second, which shows that the computation is in error about

4 percent.

In order that accurate results may be obtained with piezom-

eters it is necessary, particularly under low pressure-heads, that

the tubes be inserted into the pipe at right angles. If they be

inclined with or against the current, the pressure-head hi will be

greater or less than that due to the pressure at the mouth. Let

be the angle between the direction of the flow and the inserted

piezometer tube. Since the impulse in the direction of the cur-

rent is proportional to the velocity-head (Art. 27), the component
of this in the direction of the inserted tube tends to increase the

normal pressure-height h\ when 6 is less than 90 and to decrease

it when 6 is greater than 90. Thus

ho = hi + n cos Q
2g

may be written as approximately applicable to the two cases in

which n is a coefficient

the value of which has

not been ascertained.

In this, if the tube be

inserted normal to the

pipe, 6 = 90 and h be-

comes hi, the height

due to the static pres-

sure in the pipe ;
if v =

o, the angle 6 has no effect upon the

piezometer readings. But if 9 differs from 90 by a small angle,

the error in the reading may be large when the velocity in the

pipe is high. Fig. 98& illustrates the three cases.

The question as to the point from which the pressure-head should

be measured deserves consideration. In the fig-

ures of preceding articles hi and h^ have been esti-

mated upward from the center of the pipe, and it

is now to be shown that this is probably correct.

Let Fig. 98c represent a cross-section of a pipe to

which are attached three piezometers as shown. If

there be no velocity in the tube or pipe, the Fig. 98c.

Fig. 986.
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water surface stands at the same level in each piezometer, and

the mean pressure-head is certainly the distance of that level above

tin- center of the cross-section. If the water in the pipe be in motion,

probably the same would hold true. Referring to formula (75)i

and to Fig. 75a, it is also seen that if there be no velocity //' = h^ h^
which cannot be true unless hi h^ = o, since there can be no loss

of head in the transmission of static pressures ;
hence hi and ht cannot

be measured from the top of the section. In any event, since the pie-

zometer heights represent the mean pressures, it appears that they
should be reckoned upward from the center of the section. The pie-

zometer couplings for hose devised by Freeman are arranged with con-

nections on the top, bottom, and sides, as are also those used for the

Venturi meter (Art. 38), and thus the results obtained correspond to

mean pressures or pressure-heads. Even in cases where the two points

of connection are so near together that the difference Hz Hi, can be

measured by a differential manometer (Art. 37), the method of con-

necting the tubes to the pipes should receive careful attention.

Prob. 98. At a point 500 feet from the reservoir, and 28 feet below its

surface, a pressure gage reads 10.5 pounds per square inch; at a point 8500
feet from the reservoir and 280.5 feet below its surface, it reads 61 pounds

per square inch. If the pipe is 1 2 inches in diameter, compute the discharge.

ART, 99. THE HYDRAULIC GRADIENT

The hydraulic gradient is a line which connects the water

levels in piezometers placed at intervals along the pipe ;
or rather,

it is the line to which the
^1 A

water levels would rise if
""

f"
"

"7

piezometer tubes were in-

serted. In Fig. 98a the line ^ ~--''C
J^'

BC is the hydraulic gradient, n
^l"*^^^ ^^^"x^fc_

and it is now to be shown "r"^^ ^^^ :
,

that for a pipe of uniform

size this is approximately a

straight line. For a pipe discharging freely into the air, as in Fig.

!K/, this line joins the outlet end with a point B near the top of

the reservoir. For a pipe with submerged discharge, as in Fig.

99a, it joins the lower water level with the point B.

Let DI be any point on the pipe distant /i from the reservoir,
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measured along the pipe line. The piezometer there placed

rises to Ci, which is a point in the hydraulic gradient. The equa-

tion of this line with reference to the origin A is given by the first

equation of Art. 98, or

d 2g

in which HI is the ordinate Aid, and /i is the abscissa AA i, pro-

vided that the length of the pipe is sensibly equivalent to its

horizontal projection. In this equation the first term of the

second member is constant for a given velocity, and is represented

in the figure by AB or AiBi ;
the second term varies with /i, and

is represented by Bid. The gradient is therefore a straight line,

subject to the provision that the pipe is laid approximately hori-

zontal
;
which is usually the case in practice, since quite material

vertical variations may exist in long pipes without sensibly

affecting the horizontal distances.

When the variable point A is taken at the outlet end of the

pipe, HI becomes the head h, and /i becomes the total length /,

agreeing with the formula of Art. 93, if the losses of head due to

curvature and valves be omitted. When di is taken very near

the inlet end, /i becomes zero and the ordinate HI becomes AB,
which represents the velocity-head plus the loss of head at en-

trance to the pipe.

When there are easy horizontal curves in a pipe line, the above

conclusions are unaffected, except that the gradient BC is always

vertically above the pipe, and therefore can be called straight

only by courtesy, although as before the ordinate Bid is propor-
tional to /i. When there are sharp curves, the inclination of the

hydraulic gradient becomes greater and it is depressed at each

curve by an amount equal to the loss of head which there occurs.

When an obstruction occurs in a pipe, or a valve is partially

closed, there is a sudden depression of the gradient at the ob-

struction or at the valve.

If the pipe is so laid that a portion of it rises above the hy-
draulic gradient as at A in Fig. 99&, an entire change of condition

generally results. If the pipe is closed at C, all the piezometers
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stand in tlu- liiu- AA, at the same level as the surface of the reser-

voir. When the valve at C is opened, the flow at first occurs

under normal conditions, // being the head and BC the hydraulic

gradient. The pressure-head A
at D\ is then negative, and

represented by D\C\. As a

consequence air tends to enter

the pipe, and when it does so,

owing to defective joints, the

continuity of the flow is

broken, and then the pipe from D\ to C is only partly filled

with water. The hydraulic gradient is then shifted to BDi, the

discharge occurs at D\ under the head A\D\, while the remain-

der of the^pipe acts merely as a channel to deliver the flow. It

usually happens that this change results in a great diminution

of the discharge, so that it has been necessary to dig up and relay

portions of a pipe line which have been inadvertently run above

the hydraulic gradient. This trouble can always be avoided by

preparing a profile of the proposed route, drawing the hydraulic

gradient upon it, and excavating the pipe trench well below the

gradient. In cases where the cost of this excavation is so great

that it is resolved to lay the pipe above the gradient, all the joints

of the pipe above the gradient should be made absolutely tight

so that no air can enter the pipe and interrupt the flow.

When a large part of the pipe lies above the hydraulic gradient

it is called a siphon. Conditions sometimes exist which require

a pipe line to be laid as a siphon for a short distance. In such

a case an air chamber is sometimes built at the highest elevation

so that air may collect in it instead of in the pipe, and provision

is made for recharging the siphon when the flow ceases by admit-

ting water at the highest elevation, or by operating a suction-

pump placed there, or by forcing water into the pipe by a pump
located at a lower elevation. Probably the largest siphon ever

constructed is that laid about 1885 at Kansas City, Mo.,

it being 42 inches in diameter, and 730 feet long, with the summit

10 feet above the general level of the pipe line. The air that
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collected at the summit was removed by operating a steam ejec-

tor for a few minutes each day.*

The pressure-head hi at any point on the pipe line distant li

from the reservoir may be expressed in terms of the static head on that

point, the entrance-head h', and the friction-head k" by inspection

of Fig. 99a; thus,
hl = A^- h' - h"

Further, from the similar triangles in the figure,

that is, the loss in friction in the distance ^ is proportional to /t . For

long pipes, in which h is small, this may be written //' = h(li /),

or the friction loss at any point on the pipe line is proportional to the

total head and to the distance of the point from the reservoir.

The above discussion shows that it is immaterial where the pipe

enters the reservoir, provided that it enters below the hydraulic

gradient point B. It is also not to be forgotten that the whole inves-

tigation rests on the assumption that the lengths /x and / are sensibly

equal to their horizontal projections.

Prob. 99. A pipe 3 inches in diameter discharges 538 cubic feet per

hour under a head of 12 feet. At a distance of 300 feet from the reservoir

the depth of the pipe below the water surface in the reservoir is 4.5 feet.

Compute the probable pressure-head at this point.

ART. 100. A COMPOUND PIPE

A compound pipe is one having different sizes in different

portions of its length. The change from one length to another

should be made by a "reducer," which is a conical frustum several

feet long, so that losses of head due to sudden enlargement or

contraction are avoided (Arts. 76, 77). Let di, d2 ,
dz , etc., be the

diameters
; /i, 4, IB, etc., the corresponding lengths, the total

length being /i + 4 + etc. Let ?i, %, etc., be the velocities in

the different sections. Neglecting the loss of head at entrance

and also that lost in curvature, the total head h may be placed

equal to the loss of head in friction, or

2 2g

*
Engineering News, 1891, vol. 26, p. 519; 1893, vol. 29, pp. 423, 588.
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Now if the discharge per second be q, and the flow be steady

vi
=
ql\ "di* vz

= ql\ -*&, etc.

Substituting these velocities and solving for q, gives

(100)

in which the friction factors /i,/2 , etc., corresponding to the given

diameters and computed velocities are found from Table 90a.

For example, consider the

case of a pipe having only

two sizes
;

let di = 2 and

/i
=

28oojeet, d* =
1.5 and

^ = 2145 feet, and h = 127.5

feet. Using for /^and /2 the

mean value, 0.02, and making the substitutions in the formula,

there is found
q
= 26 2 cubic feet per secOnd

from which vi
=

8.3 and z>2
= 14.8 feet per second

Now from Table 90a it is seen that/i
=

0.015 and/. =
0.015 '>

and

repeating the computation,

q
=

30.2 cubic feet per second

whence v\
=

9.6 and v2 = 17.1 feet per second.

These results are probably as definite as the table of friction fac-

tors will allow, but are to be regarded as liable to an uncertainty

of several percent.

To determine the diameter of a pipe which will give the same

discharge as the compound one, it is only necessary to replace

the denominator in the above value of q byfl/d*, where / = k + k

+ etc., and d is the diameter required. Taking the values of

/ as equal, this gives ^ ^ ^^ ~
i r i etc

Applying this to the above example, it becomes

4945 = 2800^2145
d5 25 i-5

5

from which d = 1.68 feet, or about 20 inches.
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A compound pipe is sometimes used to prevent the hydraulic

gradient from falling below the pipe line. Thus, it is seen in Fig.

100 that the hydraulic gradient rises at Dl and falls at D2 ,
and that its

slope over the larger pipe is less than over the smaller one. These

slopes and the amount of rise at Dl can be computed for a given
case. Using the above numerical data, the loss of head in friction for

100 feet of the large pipe is

h" = 0.015^^ =
1.07 feet,

2 2g

while the same for the small pipe is 4.55 feet. Hence the slope of the

gradients AC1 and C2C is more than four times as rapid as that of the

gradient E^. In the large pipe at Dl the velocity-head is 0.01555
X 9.6

2 =
1.43 feet, and, supposing that no loss occurs in the reducer,

the velocity-head for the small pipe is 4.55 feet. The vertical rise

C^! of the hydraulic gradient at Dl is hence the rise in pressure-head

4.551.43 =
3.12 feet, and a fall of equal amount occurs at D2 .

When a portion of a small pipe is to be replaced by a large one, it

is immaterial in what part of the length it is introduced, for it is seen

that formula (100) takes no note of where the length /! is placed in the

total distance /. The Romans knew that an increase in the diameter

of a pipe after leaving the reservoir would increase the discharge, and

the law passed by the Roman senate about the year 10 B.C. forbade a

consumer to attach a larger pipe to the standard pipe within 50 feet

of the reservoir to which the latter was connected.*

Prob. 100. At Rochester, N.Y., there is a pipe 102 277 feet long, of

which 50 828 feet is 36 inches in diameter and 51 449 feet is 24 inches in di-

ameter. Under a head of 143. 8 feet this pipe is said to have discharged in

1876 about 14 cubic feet per second and in 1890 about 10^ cubic feet per
second. Compute the discharge by (100), and draw the hydraulic gradient.

ART. 101. A PIPE WITH A NOZZLE

Water is often delivered through a nozzle in order to perform
work upon a motor or for the purposes of hydraulic mining, the

nozzle being attached to the end of a pipe which brings the flow

from a reservoir. In such a case it is desirable that the pressure
at the entrance to the nozzle should be as great as possible, and

*
Herschel, Water Supply of the City of Rome (Boston, 1889), p. 77.
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this will be effected when the loss of head in the pipe is as small

as possible. The pressure column in a piezometer, supposed to

be inserted at the end of the

pipe, as shown at CiDi in

Fig. 101, measures the pres-

sure-head there acting, and the

height A\C\ measures the lost

head plus the velocity-head,

the latter being very small. Fig> 10L

Let // be the total head on the end of the nozzle, D its diameter,

and V the velocity of the issuing stream. Let d and v be the

corresponding quantities for the pipe- and / its length. Then the

effective velocity-head of the issuing stream is V*/2g, and the lost

head is hV2
/2g. This lost head consists of several parts:

that lost at the entrance D
;
that lost in friction in the pipe ;

that

lost in curves and valves, if any ;
and lastly, that lost in the nozzle.

Then the principle of energy gives the equation

V2
v* ,/ v

2
,

v* v* ,V*h- - = m--h- -+mi + nh--\-m-
2g 2g d2g 2g 2g 2g

Here m is determined by Art. 89, / by Art. 90, mi by Art. 91, ;;/.

by Art. 92, while m' for the nozzle is found in the same manner

as m is found for the pipe, or m' = (\lc^f i, where c\ is the co-

efficient of velocity for the nozzle (Art. 83). This value of ;?/'

takes account of all losses of head in the nozzle, so that it is un-

necessary to consider its length ;
for a perfect nozzle c\ is unity

and m' is zero.

The velocities v and V are inversely as the areas of the cor-

responding cross-sections (Art. 31), since the flow is steady,

whence V = v(d/D)
2

. Inserting this in the above equation and

solving for v gives, if m\ and m* be neglected,

-4:
for the velocity in the pipe. The velocity and discharge from the

nozzle are then given by
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and the velocity head of the jet is V-/2g. These equations

show that the greatest value of V obtains when D is as small as

possible compared to d, and that the greatest discharge occurs

when D is equal to d. When the object of a nozzle is to utilize

the velocity-head of a jet, a large pipe and a small nozzle should

be employed. When the object is to utilize the energy of the jet

in producing power by a water wheel, there is a certain relation

between D and d that renders this a maximum (Art. 161).

As a numerical example, the effect of attaching a nozzle

to the pipe whose discharge was computed in Art. 94 will be

considered. There 7=1500, ^ = 0.25, and h = 64 feet; ^ =
0.5,

v = 5.3 feet, and q
= o. 26 cubic feet per second. Now let the nozzle

be one inch in diameter at the small end, or # = 0.0833 feet, and

let its coefficient c\ be 0.98. Here d/D = T
>

. and for 7=0.025
the velocity in the pipe is

, 2X32.16X64
>.5 + 0.025 X 1500 X 4 + 1.041 X 81

or 21
= 4.2 feet per second. The effect of the nozzle, therefore,

is to reduce the velocity in the pipe. The velocity of the jet

at the end of the nozzle is, however,

V = v(d/D)
2 =

37.8 feet per second,

and the discharge per second from the nozzle is

q
=

\ irD^V = 0.206 cubic feet

.which is about 20 percent less than that of the pipe before the

nozzle was attached. The nozzle, however, produces a marvel-

ous effect in increasing the energy of the discharge ;
for the veloc-

ity-head corresponding to 5.3 feet per second is only 0.44 feet,

while that corresponding to 37.8 feet per second is 22.2 feet, or

about 50 times as great. As the total head is 64 feet, the efficiency

of the pipe and nozzle is about 35 percent.

If the pressure-head h^ at the entrance of the nozzle be observed,
either by a piezometer tube or by a pressure gage, the velocity of dis-

charge from the nozzle can be computed by the formula

V = Ifik

VdAi) 2 -(
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t he demonstration of which is given in Art. 83. This can be used when

a hose and nozzle is attached at any point of a pipe or at a hydrant.

It can also be used to compute hi when V has been found. Thus, for

the above example,

which shows that the loss of head in the nozzle is about 0.6 feet. The

loss of head at entrance, for this case, is about 0.2 feet, and the loss of

head in friction in the pipe is 41.0 feet.

Prob. 101. A pipe 12 inches in diameter and 4320 feet long leads from

a reservoir to a gravel bank against which water is delivered from a nozzle

2 inches in ditHrieter. The head on the end of the nozzle is 320 feet and the

coefficient of velocity of the nozzle is 0.97. Compute the velocity in the

pipe, the velocity-head of the jet, and the discharge.

ART. 102. HOUSE-SERVICE PIPES

A service pipe which runs from a street main to a house is

connected to the former at right angles, and usually by a corpo-

ration cock or by a
"
ferrule.

" The loss of head at entrance

in such cases is hence larger

than in those before discussed,

and m should probably be taken

as at least equal to unity. The

pipe, if of lead, is frequently

carried around sharp corners by
curves of small radius; if of

iron, these curves are formed by
- . Fig. 102a.

pieces forming a quadrant of a

circle into which the straight parts are screwed, the radius of

the center line of the curve being but little larger than the radius

of the pipe, so that each curve causes a loss of head equal

nearly to double the velocity-head (Art. 91). For new iron

pipes the loss of head due to friction may be estimated by the

rules of Art. 90 or by Table 906.

A water main should be so designed that a certain minimum

pressure-head h\ exists in it at times of heaviest draft. This

pressure-head may be represented by the height of the pie-

L
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zometer column AB, which would rise in a tube supposed to be

inserted in the main, as in Fig. 102<z. The head h which causes

the flow in the pipe is then the difference in level between the top

of this column and the end of the pipe, or AC. Inserting for

h this value, the formulas of Arts. 94 and 95 may be applied to the

investigation of service pipes in the manner there illustrated.

As the sizes of common house-service pipes are regulated by
the practice of the plumbers and by the market sizes obtain-

able, it is not often necessary to make computations regarding

the flow of water through them.

The velocity of flow in the main has no direct influence

upon that in the pipe, since the connection is made at right angles.

But as that velocity varies, owing to the varying draft upon the

main, the effective head h is subject to continual fluctuations.

When there is no flow in the main, the piezometer column rises

until its top is on the same level as the surface of the reservoir
;

in times of great draft it may sink below C, so that no water can

be drawn from the service pipe.

The detection and prevention of the waste of water by con-

sumers is a matter of importance in cities where the supply is

limited and where meters are not in use. Of the many methods

devised to detect this waste, one by the use of piezometers may
be noticed, by which an inspector without entering a house may
ascertain whether water is being drawn within, and the approxi-

mate amount per second. Let M be the street main from which

a service pipe MOH runs to a house H. At the edge of the side-

walk a tube OP is connected to the service pipe, which has a three-

way cock at O, which can be turned from

above. The inspector, passing on his rounds

in the night-time, attaches a pressure gage
at P and turns the cock O so as to shut off

the water from the house and allow the full

pressure of the main pi to be registered.

Then he turns the cock so that the water may flow into the

house, while it also rises in OP and registers the pressure p2 .

Then if p2 is less than pi, it is certain that waste is occurring
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within the house, and the amount of this may be approximately

computed and the consumer be notified accordingly.

The pitometer, which consists of a rated Pitot tube (Art.

41), facing the current in the pipe, with a differential gage (Art.

37) to determine the pressure-head due to the current, is also used

for the measurement of the flow in water mains and for the detec-

tion of water waste. A photographic record of the difference in

height of the columns of liquid in the gage tube is kept, and this

shows the discharge through the water main at any instant,

as also all fluctuations in the flow.* (See Art. 38.)

When the pressure in the street main is very high, a pressure

regulator may be placed between the main and the house in order

to reduce the pressure and thus allow lighter pipes to be used in

the house. Fig. 102c shows the principle of its action, where

A represents the pipe from the main

and B the pipe leading to the house.

A weight W is placed upon a piston

which covers the opening into the

chamber C. This weight and that of

the piston are sufficient to overcome a

certain unit-pressure in C, and therefore
Fig 102c

the unit-pressure in B is less than that

in A by that amount. For example, suppose the pressure in A
to be 100 pounds per square inch, and let it be required that

the pressure in B shall not rise above 60 pounds per square

inch
;
then the piston must be so weighted that it may exert on

the water in C a pressure of 40 pounds per square inch. When
water is drawn out anywhere along the pipe B, the pressure in

the chamber above the piston falls below 60 pounds per square

inch, and hence the piston rises and water flows from A into B
until the pressure is restored. Instead of a weight, a spring is

generally used, or sometimes a weighted lever.

Large-sized pressure regulators are also used to control and

maintain a constant pressure in distributing mains in cases where

*
Engineering Record, 1903, vol. 47, p. 122.
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a low service level is fed from one of higher pressure, or in situa-

tions where it is desired to maintain a pressure which shall not

exceed a fixed maximum.

Prob. 102. In Fig. 1026 let the house pipe be one inch in diameter and

the pressure at the gage be 34 pounds per square inch when there is no flow.

The distance from the main to the gage is 16 feet and from the gage to the

end of the pipe is 29 feet. At the end of the pipe, which is 5 feet higher than

the gage, 2.1 gallons of water are drawn per minute. Compute the pressure

at the gage.

ART. 103. OPERATING AND REGULATING DEVICES

In the operation of nearly every water works system certain

special apparatus is employed in order to maintain nearly con-

stant conditions within the system and under the variable

draft to which it is subjected. These forms of apparatus are

designed to operate automatically and so to do away with hand

regulation. Many of these are designed, as described under

meters in Art. 38, to trace on a chart a continuous autographic

record of the pressure, of the water level, or of the discharge.

Among these are pressure gages (Art. 36), water stage registers

(Art. 34), and rate of flow gages (Art. 38).

Air valves are attached to water mains in situations where

air is likely to accumulate within the pipe and by its presence in-

terfere with the flow of the water or be carried along within the

pipe and produce dangerous water hammer. Valves of this type

permit the air within the pipe to escape, but automatically close

and prevent the passage of water. They are also placed on all

of the principal summits of riveted steel and other pipes so as to

admit air into the pipe in case of a sudden break and thus pre-

vent its collapse under external atmospheric pressure. In the

case of cast-iron pipes, on account of the strength of their shells,

this precaution is not usually necessary. The principle of the

operation of the air valve is simply that of a float placed in a cham-
ber above and connected with the pipe from which the air is to be

removed. When air accumulates in the pipe, it passes up into

the chamber; the float falls, and in falling, by means of a lever,

operates and opens a valve. The air then escapes under the
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pressure of the water until the float again rises and causes the

valve to close.

Pressure regulators operating on the principle described in

Art. 102 are employed for the purpose of controlling and maintain-

ing a constant pressure in distributing systems in situations where

a low service level is fed from one of higher pressure. They

may also be used to regulate the flow between reservoirs situated

at different elevations. In the larger sized regulators the valve

which controls the flow is operated by a pair of differential pistons

connecting with a chamber, the pressure in which is caused to

vary with fluctuations in pressure on the two sides of the regu-

lator. The variations in pressure within this chamber are in-

tensified by two small-sized regulators which connect directly

to the high and low pressure sides of the large regulator. That

on the upstream side of the main regulator is designed to close

under an increase in pressure, while that on the downstream side

will tend to open as the pressure rises. The effect of any dif-

ference in pressure on the two sides of the main regulator is there-

fore promptly reflected in the pressure within the chamber, and

the differential pistons at once move to open or close the regu-

lating valve in the effort to maintain within the pipe the pre-

determined constant pressure at which the apparatus has been

set. A sixteen-inch regulator of this type will control the pres-

sure within narrow limits and pass through it, as may be necessary

to accomplish this purpose, quantities up to ioor 15 millions of

gallons per day.

Relief valves for the purpose of preventing the pressure within

a pipe from rising above some predetermined limit, either on ac-

count of a sudden falling off of the draft or by water hammer, are

also made to operate on the principle described in Art. 102, but

in the reverse direction. The regulating valve described in

the preceding paragraph may also be adapted for this use by

simply making the necessary adjustments of the small regulators.

In certain situations and principally in connection with the oper-

ation of filtration plants it is desirable that the flow within a pipe

shall be maintained at a constant rate. This may be accomplished
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by permitting the water to pass into an open chamber, from which it

flows over and through a circular weir supported on floats. As the

water rises in the chamber the weir also rises, and a constant relation

is thus obtained between the height of the water and that of the weir

crest. In order to limit the necessary height of the chamber the float

may be made to operate a butterfly valve on the inlet pipe, so that when

the float rises the valve will partly close and thus diminish the quantity

of water entering the chamber. Conversely as the float falls the

valve is opened and more water permitted to enter. In neither of

these two cases can the flow in the outlet pipe exceed the predeter-

mined capacity of the circular weir. Another form of the rate of flow

controller is that in which a balanced valve is operated by the differ-

ences in pressure at the throat and downstream end of a Venturi

tube inserted in the line. This valve will open or close as the quantity

of water decreases or increases below or above some fixed quantity.

In this manner a smaller or greater loss of head is automatically

introduced into the system, and since the discharge is proportional

to the square root of the effective head, the mechanism operates in

such a manner as to maintain a constant flow.

For determining the discharge or rate of flow within a pipe at

any instant either a Venturi meter or a Pitot tube with the neces-

sary connections may be used, as described in Arts. 38 and 41.

Loss of head gages are used in cases where it is desired to indicate

at one place the loss of head which occurs between two points on a

system. The most usual application is in the case of a filter bed

where the loss of head is constantly varying on account of the clogging

of the filter surface. In this situation a loss of head gage indicates

at once whether or not a filter should be put out of service and cleaned.

A gage for this service consists of a float in each of two chambers,
the chambers being connected with the pipe or filter system at the

points between which it is desired to measure the difference or loss of

head. One of the floats is connected by means of a wire to a hori-

zontal axis which carries a pointer, while the other is connected to

another horizontal axis which carries the dial on which the pointer

indicates. The two horizontal axes are concident, and the reading of

the pointer indicates the loss of head. If the water in both of the cham-

bers rises or falls an equal amount, the pointer will still indicate the

same loss of head, as the directions of rotation of the pointer and dial

are the same. In order to avoid a movable dial other forms of this
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apparatus an arranged by the introduction of a differential mechanism,
so that the loss of head is directly indicated by the pointer on a sta-

tionary dial.

Valves for maintaining a constant level in a tank or reservoir are

usually constructed, for small sizes, of a ball float operating a cock

as it rises and falls by means of a system of levers. On larger work

an ordinary gate valve operated by a hydraulic cylinder and piston

may be used. A float either on the water surface itself or on the sur-

face of mercury in a vessel connecting with the water operates a small

three-way valve which admits the water either above or below the pis-

ton of the hydraulic valve and so either closes or opens it as the water

level rises above or falls below a fixed elevation. In order to prevent

such valves from closing too rapidly and thus inducing water hammer,
the ports of the three-way valve may be made quite small so as to

cause the water to pass ver^y slowly into the operating cylinder or else

another piston may be introduced into the system and so arranged

that the water behind it is permitted to escape through an orifice the

size of which can be regulated. By this means the time of closing can

be very nicely adjusted.

All automatic devices are more or less likely to get out of order.

This is simply due fo the inherent difficulty in attaining perfection

in any device. In order that they may at all times retain their ad-

justment and properly perform the functions for which they have been

designed they must be frequently inspected and always kept in good
condition and repair. The selection of any particular form of regu-

lating, control, or recording device will depend upon the conditions

under which it is to operate and upon the past performance of the

mechanism as attested by the experience of those who have used it.

Prob. 103. Make a sketch showing the arrangement above described

for maintaining a constant level in a tank by means of a gate valve operated

by a hydraulic cylinder. Show also the arrangement of the dampening

piston for preventing too rapid closing of the valve.

ART. 104. WATER MAINS IN TOWNS

The simplest case of the distribution of water is that where

a single main is tapped by a number of service pipes near its end,

as shown in Fig. 104. In designing such a main the principal

consideration is that it should be large enough so that the pres-



T

252 Chap. 8. Flow of Water through Pipes

sure-head hi, when all the pipes are in draft, shall be amply suffi-

cient to deliver the water into the highest houses along the line.

It is generally recommended that

this pressure-head in commercial and

manufacturing districts should not

be less than 150 feet, and in sub-

^__ i
urban districts not less than 100 feet.

t
o+o o oio I The height H to the surface of the

water in the reservoir will always be

greater than hi, and the pipe is to

be so designed that the losses of head may not reduce hi below

the limit assigned. The head h to be used in the formulas is

the difference H hi. The discharge per second q being known

or assumed, the problem is to determine the proper diameter d

of the water main.

A strict theoretical solution of even this simple case leads to

very complicated calculations, and in fact cannot be made with-

out knowing all the circumstances regarding each of the service

pipes. Considering that the result of the computation is merely
to enable one of the market sizes to be selected, it is plain that

great precision cannot be expected, and that approximate methods

may be used to give a solution entirely satisfactory. It will then

be assumed that the service pipes are connected with the main

at equal intervals, and that the discharge through each is the same

under maximum draft. The velocity v in the main then decreases

and becomes o at the dead end. The loss of head per linear foot

in the length li (Fig. 104) is hence less than in /. To determine

the total loss of head in the length /i, let vi be the velocity at a

distance x from the dead end
;
then vi = v x/li and the loss of

head in friction in the length Sx is

d 2g dli~ 2g

and hence between the limits o and h that loss of head is

(104)
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provided that/ remains constant. This is really not the case, but

no material error is thus introduced, since/ must be taken larger

than the tabular values in order to allow for the deterioration of

the inner surface of the main. The loss of head in friction for

a pipe which discharges uniformly along its length may therefore

be taken at one-third of that which occurs when the discharge

is entirely at the end.

Now neglecting the loss of head at entrance and the effective

velocity-head of the discharge, the total head h is entirely con-

sumed in friction, or

*-/i+A
d 2g 3</ 2g

Placing in this for v its value in terms of the total discharge q

and the diameter of the pipe, and solving for d, gives

This is the same as the formula of Art. 97, except that / has been

replace by / -f \l\. The diameter in feet then is

0.4790+

when h and / are in feet and q in cubic feet per second.

For example, consider a village consisting of a single street

with length /i
= 3000 feet, and upon which there are 100 houses,

each furnished with a service pipe. The probable population

is then 500, and taking 100 gallons per day as the consumption

per capita, this gives for the average discharge per second along

the length l\

= _ 500X100 = cubk f

7.48X3600X24

and since the maximum draft is often double of the average,

q will be taken as 0.15 cubic feet per second. The length / to

the reservoir is 4290 feet, whose surface is 90.5 feet above the dead

end of the main, and it is required that under full draft the pres-

sure-head in the main shall be 75 feet. Then h =
90.5 75

=
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15.5 feet, and taking/ =
0.03 in order to be on the safe side, the

formula gives d = Q ^6 feet =^ inches

Accordingly a four-inch pipe is nearly large enough to satisfy

the imposed conditions.

To consider the effect of fire service upon the diameter of

the main, let there be four hydrants placed at equal intervals

along the line /i, each of which is required to deliver 20 cubic

feet per minute under the same pressure-head of 75 feet. This

gives a discharge 1.33 cubic feet per second, or, in total, q
=

1.33

+ 0.15
=

1.5 cubic feet. Inserting this in the formula, and

using for / the same value as before,

d = 0.897 feet = 10.8 inches.

Hence a ten-inch pipe is at least required to maintain the required

pressure when the four hydrants are in full draft at the same time

with the service pipes.

Prob. 104. Compute the velocity v and the pressure-head hi for the

above example, if the main is 8 inches in diameter and the discharge be 1.5

cubic feet per second. Also when the main is 1 2 inches in diameter.

ART. 105. BRANCHES AND DIVERSIONS

In Fig. 1050 is shown a main of length / and diameter d, con-

nected with a storage reservoir, which has two branches with

lengths /i and k, and

~17 15 H diameters d\ and d2
JL

"
i & -*-*

leading to two smaller

distributing reservoirs.

These data being given,

Fig. 105o.
as also the heads HI
and H2 under which

the flow occurs, it is required to find the discharges q\ and q2 .

Let
z>, z>!, and v2 be the corresponding velocities

;
then for long

pipes, in which all losses except those due to friction may be

neglected, the friction-heads for the two branches are

H, -v = fk?. Tin -v = fah.v
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where y is the difference in level between the reservoir sun

and the surface of the water in a piezometer tube supposed to be

inserted at the junction. This y is the friction-head consumed in

the flow in the large main, and hence from formula (90) its value is

y-fl*y J
d2g

Inserting this in the two equations, and placing for the velocities

their values in terms of the discharges, they become

from which the values of q\ and qz are best obtained by trial.

When it is required to determine the diameters from the given

lengths, heads, and discharges, there are three unknown quan-

tities, d, d^dz, to be found from only two equations, and the prob-
lem is indeterminate. If, however, d be assumed, values of d\

and ^2 rnay be found
;
and as d may be taken at pleasure, it ap-

pears that an infinite number of solutions is possible. Another

way is to assume a value of y, corresponding to a proper pressure-

head at the junction ;
then the diameters are directly found from

formula (97) 3 for long pipes, in which // is replaced by y for the

large main, and by HI y and H2 y for the two branches.

When two reservoirs, A\ and AI, are at a higher elevation than

a third one into which they are to deliver water by pipes of length

/i and /2, both of which connect with a third pipe of length / which

leads to the third reservoir, the above formulas also apply. In

this case H\ and H* are the heights of the water levels in the reser-

voirs AI and AI above that in the third reservoir.

When the principal main of a water-supply system enters

a town, it divides into branches which deliver the water to different

districts, and when such branches connect again with the princi-

pal main, they form what may be called
"
diversions." Figure

1056 shows a simple case, A being the reservoir and AB the prin-

cipal main, while the pipe lines BCE and BDE form two routes
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or diversions through which water can flow to F. Let the main

AB have the length / and the diameter d, the line BCE the length

/i and the diameter di, the line BDE the length k and the diameter

</2 , while the line EF has the length /3 and the diameter ds . Sup-

pose that no water is drawn from the pipes except at F and be-

yond, that the pressure-head Ff at F is //3 ,
and that the static

head Ffi on F is h, and let it be required to find the velocity and

discharge for each of the pipes. The total head H lost in friction

is h - h3 ,
and if W, Wi, W2 ,

and Ws represent the weights of water

v.

c

Fig. 1056.

that pass any sections of the four pipes per second, the theorem

of energy, neglecting the entrance head at A and the velocity-head

at F, gives

wf*
d2g

Now referring to the figure where piezometers are shown on the

profile at B and E it is seen that the loss of head in friction is the

same for the diversions BCE and BDE
; accordingly there must

exist the condition 7 7

and since W equals W\ + Wz and also equals W3 ,
the above

energy equation reduces to the simple form

B-fl^+fiL^+fikit.d 2g di 2g ds 2g

The values of v\ and vs in terms of v are now to be inserted in this

equation in order to determine v. From the conditions of con-
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tinuity of flow and that of equality of friction-head in the diver-

sions. are found three equations,

and accordingly, if the square roots of the quantities f\l\ld\ and

/-/: d-2 be called e\ and 2 for the sake of abbreviation,

The above formula for F then reduces to

from which can be computed. Then i, %, and fl3 may be found,

as also the discharges q, qi, ?2 , and ?3 .

As a numerical example, let / = 10 ooo, /i
= 2200, 2

= 2800,

/s
= 1200 feet, and d = 12, c?i

=
8, </2

=
10, ds

= 10 inches; let

F be 184 feet below the water level in the reservoir and let the

required pressure-head at F be 155 feet, so that H = 29 feet.

Taking for the friction factors the mean value 0.02 (Art. 90), the

value oifl/d is 200, that oifili/di is 66, that oifzk/dz is 67.2, and

that of /a/s/rfs is 28.8. The value of e\ is then 8.12 and that of e^ is

8.20, while d/ds is 1.2. Inserting these in the last formula, there

is found v =
2.45 feet per second; then vi = 2.16, v% = 2.14,

and z'3
=

3.53 feet per second. As a check on these results the

friction-heads for the four pipes may be computed, and these are

found to be 18.6 feet for /, 4.8 feet for /i and /2 , and 5.5 feet for /3 ;

the sum of these is 28.9 feet, which is a sufficiently close agreement

with the given 29.0 feet for a preliminary computation. The dis-

charges are q
= q3 = 1.93, q\

=
0.75, <?2

= 1.18 cubic feet per

second, and the sum of gi and qz equals q, as should be the case.

The computation may now be repeated, if thought necessary.

the above velocities being used to take better values of the

friction factors from Table 90a.

There are marked analogies between the flow of water in pipes

and the flow of electricity in metallic conductors. Thus in Fig. 105,

let BCE and BDE he two wires that carry the electric current passing
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from A to F. If Ci and C2 be the currents in these circuits and RI
and R2 the resistances of the wires, it is an electric law that R^i =

7?2C2 ,
or the currents are inversely as the resistances. For water

the discharges q\ and
</2 are analogous to the electric currents, and,

from the above equation, which expresses the equality of the friction-

heads, it is seen that

and accordingly the same law holds if the coefficients of q\ and g2 be

called resistances. If there be a third diversion BGE of length /4

and diameter d connecting B and E, the current or the discharge

through AB divides between the three diversions according to the

same law, and .
, , ^ , 2

~---
J 1
~ ~

J2~j~~
di 2g d-i 2g

from which it is seen that (f^h/d^ }*q is equal to each of the corre-

sponding expressions for the other diversions. This subject will re-

ceive further discussion in Art. 208.

Prob. 105. From a reservoir A a pipe 10 ooo feet long and 16 inches

in diameter runs to a point B from which two diversions lead to E. The

diversion BCE is 1600 feet long and 10 inches in diameter, while BDE con-

sists of 2000 feet of lo-inch pipe and 1500 feet of 8-inch pipe. From the

junction E, a pipe EF, 1000 feet long and 12 inches in diameter, leads to the

business section of the town, where it is desired to have four fire streams

deliver a total discharge of 900 gallons per minute through four hose lines of

2|-inch smooth rubber-lined hose and i -inch smooth nozzles. The point F is

180 feet below the water level in the reservoir. Compute the velocity and

discharge for each pipe and hose line, the friction-head lost in each and the

pressure-head at the end F.

ART. 106. CAST-IRON PIPES

Cast-iron pipes generally range in size from 4 inches to 60

inches in diameter the larger sizes being usually made to order.

They are cast in 1 2-foot lengths and dipped into a hot bath of

coal-tar. The joints are of the bell and spigot type, the space
about the spigot being filled with lead or other material so as to

form a tight joint.

Some waters act rapidly on cast-iron causing the formation

of tubercules of iron rust to such an extent that in the course of
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years the diameter of the pipe may be reduced by fully 50 permit .

Various machines have been devised for removing such incrusta-

tions and deposits by scraping and thus in part restoring the orig-

inal capacity of the pipe. No definite rule can be laid down for the

selection of a proper friction factor for use in the design of a pipe.

Each particular case must be carefully studied and the proper
factor determined upon. Many experiments have been made in

order to determine the friction factor in clean cast-iron pipes, and

the results are tabulated in Table 900. Other experiments have

been made on pipes of various ages and a few of the results are

here given-m Table 106 in order to illustrate the range which

is to be expected in the values of the friction factor.

TABLE 106. ACTUAL FRICTION FACTORS FOR CAST-IRON PIPES

Diam-
eter in

Inches
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ART. 107. RIVETED PIPES

Pipes 36 inches and larger in diameter have been made of

wrought-iron or steel plates riveted together. Wrought-iron,

however, is now but little used, on account of its higher cost,

except in the form of thin sheets for temporary pipes. Each

section usually consists of a single plate, which is bent into the

circular form and the edges united by a longitudinal riveted lap

joint. The different sections are then riveted together in trans-

verse joints so as to form a continuous pipe. At AB (Fig. 107a)

is shown the so-called taper joint, where the end of each section

Fig. 107.

goes into the end of the following one, as in a stovepipe, the flow

occurring in the direction from A to B. At CD is seen the method

of cylinder joints where the sections are alternately larger and

smaller. For the large sizes double rows of rivets are used both

in the longitudinal and transverse .joints, the style of riveted

joint depending on the pressure of water to be carried by the pipe.

Riveted pipes have also been built with butt joints on both

longitudinal and transverse seams, lap plates being on the outside.

Pipes of this kind have long been in use in California in tem-

porary mining operations, the diameters being from 0.5 to 1.5

feet. In 1876 one was laid at Rochester, N.Y., partly 2 and

partly 3 feet in diameter. Since 1892 several lines of large diam-

eter have been constructed, notably the East Jersey pipe of

3, 3.5 and 4 feet diameter, the Allegheny pipe of 5 feet diameter,

and the Ogden and Jersey City pipes of 6 feet diameter. The

steel pipe siphons now under construction on the Catskill Aque-
duct for the city of New York vary in diameter from 9.5 to 11.2

feet. These pipes will be covered with concrete as a protec-

tion against exterior corrosion and will be lined inside with 2

inches of Portland cement mortar both as a protective coating,

as well as for the purpose of increasing their capacity. This, it
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may be noted, is a re-adoption of the old cement-lined pipe and

it may be stated that the capacity of a pipe so lined is about 25

percent greater than that of the same pipe without such lining.

Owing to the friction caused by the rivets and joints tru <li>

charge from riveted pipes is less than that from cast-iron pipes

in which the obstruction caused by the joints is very slight.

The following values of the friction factor /, which have been

derived from the data given by Herschel,* are applicable to new

clean riveted pipes coated with asphaltum in the usual manner.

Velocity in feet per second, v = i 2 3 4 5 6

[3(1. diam., / = 0.035 0-029 0.024 0-021 0.019 0.017
Cylinder joints \ . .. ,

(4 ft. diam., 7=0.025 0.022 0.020 0.020 0.021 0.021

.. (3! ft. diam.,/ = 0.025 0.024 0.023 0.022 0.022 0.022

(4ft. diam., f = 0.027 0.026 0.025 0.024 0.023 0.023

These friction factors are approximately double those given

for new cast-iron pipes in Art. 90, this increase being largely due

to the friction of the rivet heads and lapped joints though some

of it is probably chargeable to the roughness of the asphaltum

coating. It must be noted that these factors increase with age,

thus when four years old the upper end of the above 4-foot

cylinder joint pipe gave the following values:

Velocity in feet per second, v = i 2 3 4 5 6

Cylinder joint 4 ft. diam., f = 0.042 0.032 0.030 0.029 0.029 0.029

while the lower portion of this same pipe gave the following values:

Velocity in feet per second, t=i 2 3 4 5 6

Cylinder joint 4 ft. diam., / = 0.027 0.024 0.023 0.024 0.024 0.024

The diminution in capacity here shown during a period of

4 years is greater for the upper than for the lower part of the line

and this is to be ascribed in part at least to the greater number

of vegetable growths which occur in most lines near, and for some

distance below their intakes.

When this same pipe was 15 years old (Art. 121) the values

of the friction factor for its upper end were as follows :

Velocity in feet per second, c=i 2 3 4 5 6

Cylinder joint 4 ft. diam., /= 0.036 0.036

*
115 Experiments on the Carrying Capacity of Large, Riveted, Metal Con-

duits, New York, 1897.
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and at this same age the values for its lower end were :

Velocity in feet per second, v= i 2 3 4 5 6

Cylinder joint 4 ft. diam., / = 0.046 0.034 0.032 0.031

Similarly the 3^-foot-diameter taper joint pipe above referred

to, when n years old, gave the following values for the friction

factor :

Velocity in feet per second, v- i 2 3 4 5 6

Taper joint 3^ ft. diam., /= 0.050 0.036 0.034 0.032

Experiments on the 6-footJersey City Water SupplyCompany
51

taper joint pipe gave the following values for the friction factor

at ages of 2 months to 5J years :

Velocity in feet per second, v = i 2 3 4

at & year, / = 0.021 0.022 0.022 0.022

at if years, / = 0.029 0.026 0.026 0.025

at 2\ years, /= 0.034 0.029 0.027 0.027

at 5^ years, / = 0.036 0.034 0.035

Gagings by Marx, Wing, and Hoskinsf of the flow through a,

steel riveted pipe 6 feet in diameter with butt joints when new,

and again after two years' use furnish the following values of the

friction factor / :

Velocity in feet per second, v = i 2 3 4 5 6

1897, / = 0.021 0.021 0.022 O.O2I

1899, / = 0.038 0.027 0.025 0.024 0.023 0.023

These results indicate a marked diminution with age in carry-

ing capacity. This reduction is in part due to the formation of

blisters in the asphaltum coating, which is generally used, in part,

to the formation of tubercules or rust spots and in part to vegeta-

ble growths and incrustations formed by deposits from the water.

The so-called lock-bar pipe (Fig. 107'b) was first used on the Cool-

gardie line in Australia and since 1900 has been introduced to a con-

siderable extent in the United States. In this style of pipe the transverse

joints are made up with rivets, as in the ordinary riveted pipe, but the

* Here published by courtesy of Jersey City Water Supply Company.
t Transactions American Society of Civil Engineers, 1898, vol. 40,

p. 471 5
and 1900, vol. 44, p. 34.



Wood Pipes. Art. 108

longitudinal joints are made by clamping the edges of the plates under

heavy pressure into a grooved bar which thus holds them together and
makes a joint of exceptional strength. No longitudinal rivets there-

fore interfere with the flow, and

as the plates of which the pipe

is made can be used with their

longer edges parallel to the axis

of the pipe, the number of

transverse joints can be reduced

from 50 to 60 per cent. The carrying capacity of this style of pipe

is probably materially in excess of that of riveted pipe, but no re-

corded experiments are available from which values of the friction

factor can be stated.

Prob. 107. Construct curves showing the progressive increase with age
in the value of the friction factor / for riveted steel pipes of 42, 48, and 60

inches in diameter.

ART. 108. WOOD PIPES

Wood pipes were used in several American cities during the

years 1750-1850, these being made of logs laid end to end, a 3 or

4 inch hole having been first bored through each log. Pipes

formed of redwood staves were first used in California about

1880, these staves being held in place by bands of wrought-iron

arranged so that they could be tightened by a nut and screw.

Several long lines of these large conduit pipes have been built

in the Rocky mountains and Pacific states. They have also

been used there for city mains to a limited extent and recently

have been introduced in the East on main distributing lines.

Gagings of a wood pipe 6 feet in diameter were made by Marx,

Wing, and Hoskins, in connection with those of the steel pipe

cited in Art. 107. The values of the friction factor/deduced from

their results for velocities ranging from i to 5 feet per second are

Velocity in feet per second, v = i 2 3 4 5

1897, 7 = 0.026 0.019 0.017 0.016

1899, 7 = 0.019 0.018 0.017 0.017 0.017

These show that this wood pipe became smoother after two years'

use, while the steel pipe became rougher.
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T. A. Noble's gagings of wood pipes 3.67 and 4.51 feet in

diameter furnish similar values of /.* For the smaller pipe /

ranges from 0.021 to 0.019, with velocities ranging from 3.5

to 4.8 feet per second. For the larger pipe / ranges from 0.019

to 0.016, with velocities ranging from 2.3 to 4.7 feet per second.

From Adams' measurements on a pipe 1.17 feet in diameter the

values of/ range from 0.027 to 0.020, with velocities ranging from

0.7 to 1.5 feet per second. Noble's discussion of all the recorded

gagings on wood pipes show certain unexplained discrepancies,

and he proposes special empirical formulas to be used for precise

computations. Wooden stave pipes after being in service some

time may undergo considerable alterations in form, as the circle

is apt to be deformed into an ellipse.

By the help of the formulas of the preceding pages, computations
for the velocity and discharge of steel and wood pipes under given heads

may be readily made. As such pipes are generally long, the formulas

of Art. 97 will usually apply. In designing a pipe line a liberal factor

of safety should be introduced by taking a value of / sufficiently large

so that the discharge may not be found deficient after a few years'

use has deteriorated its surface.

Prob. 108. What is the discharge, in gallons per day, of a wood stave

pipe 5 feet in diameter when the slope of the hydraulic gradient is 47.5 feet

per mile ?

ART. 109. FIRE HOSE

Fire hose is generally 2\ inches in diameter, and lined with

rubber to reduce the friction^! losses. The following values

of the friction factor / have been deduced from the experiments

of Freeman. f

Velocity in feet per second, v = 4 6 10 15 20

Unlined linen hose,
"

/= 0.038 0.038 0.037 0.035 0.034

Rough rubber-lined cotton, /= 0.030 6.031 0.031 0.030 0.029

Smooth rubber-lined cotton, /= 0.024 0.023 0.022 0.019 0.018

Discharge, gallons per minute = 61 92 153 230 306

By the help of this table computations may be made on flow of

water through fire hose in the same manner as for pipes. It is

* Transactions American Society of Civil Engineers, 1902, vol. 49, pp. 112, 143.

f Transactions American Society of Civil Engineers, 1889, vol. 21, p. 303; 346.
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seen that the friction factors for the best hose are slightly less than

those given for 2^-inch pipes in Table 90a.

When the hose line runs from a steamer to the nozzle, instead

of from a reservoir, the head // is that due to the pressure /> at

the steamer pump (Art. 11). If this hose line is of uniform diam-

eter the velocity in the hose and nozzle may be computed by
Art. 101 and the discharge is then readily found. For example,

let the hose be 2\ inches in diameter and 400 feet long, the pres-

sure at the steamer be 100 pounds per square inch, which corre-

sponds to a head of 230.4 feet, and the nozzle be if inches in diam-

eter with a "coefficient of velocity of 0.98. Then, neglecting

the loss of head at entrance, and using for / the value 0.03, the

velocity from the nozzle is found to be 66.0 feet per second, which

gives a velocity-head of 67.7 feet and a discharge of 180 gallons

per minute. The head lost in friction is 230.4 67.7
=

162.7

feet, of which 2.8 feet are lost in the nozzle and the remainder

in the hose.

Sometimes the hose near the steamer is larger in diameter

than the remaining length. Let l\ be the length and di the di-

ameter of the larger hose, and h and d^ the same quantities for

the smaller hose. Let c\ be the coefficient of velocity for a smooth

nozzle, D its diameter, and V the velocity of the stream issuing

from the nozzle. By reasoning as in Arts. 93 and 101, and neg-

lecting losses of head at entrance and in curvature, there is

found for the velocity at the end of the nozzle

(109)

and the discharge is given by q
= \TrD-V. For example, let // =

230.4, /!
=

ioo, /2
=
3 feet; ^1=3, ^2 = 2.5,

=
1.125 inches;

c\ = 0.98, and /i =/2
=
0.03 . Then, by the formula V = 69. 7 feet per

second, which gives a velocity-head of 75.5 feet and a discharge

of 190 gallons per minute. This example is the same as that

of the preceding paragraph, except that a larger hose is used

for one-fourth of the length, and it is seen that its effect is to

increase the velocity-head nearly 12 per cent and the discharge
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nearly 6 per cent. For this case the head lost in friction is 154.9

feet, of which 3.1 feet are lost in the nozzle and the remainder

in the 400 feet of hose.

In using the above formula the tip of the nozzle is supposed to be

on the same level with the pressure gage at the steamer pump and the

head h is given in feet by 2.304 p, where p is the gage reading in pounds

per square inch. When the tip of the nozzle is a vertical distance 2

above this gage, h is to be replaced by h 2 in the formula; when it

is the same vertical distance below the gage, h is to be replaced by
h-\-z. In the former case gravity decreases and in the latter case

it increases the velocity and discharge. The above formula applies

also to the case of a hose connected to a hydrant, if h is the effective-

head at the entrance, that is, the pressure-head plus the velocity-head

in the hydrant. In Art. 201 will be found further discussions re-

garding pumping through fire hose.

At a hydrant of diameter d^ the pressure-head is h^ To this is

attached a hose of length / and diameter di and to the end of the hose

a nozzle of diameter D and velocity coefficient c\. Neglecting losses

at entrance and in curvature the formula for computing the velocity

of the jet issuing from the nozzle, when its tip is held at the same level

as the gage that indicates the pressure-head, is

V =

Prob. 109. When the pressure-gage at the steamer indicates 83 pounds

per square inch, a gage on the leather hose 800 feet distant reads 25 pounds.

Compute the value of the friction factor /, the discharge per minute being

121 gallons. If the second gage be at the entrance to a ij-inch nozzle,

compute its coefficient of velocity.

ART. 110. OTHER FORMULAS FOR FLOW IN PIPES

The formulas thus far presented in this chapter are based

upon the assumption that all losses of head vary with the square

of the velocity. This is closely the case for the velocities common
in engineering practice, but for velocities smaller than 0.5 feet

per second the losses of head due to friction have been found to

vary at a less rapid rate, and in fact nearly as the first power of
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the velocity. Probably at usual velocities the loss of head in

friction is composed of two parts, a small part varying directly

with the velocity which is due to cohesive resistance along the

surface, and a large part varying as the square of the velocity

which is due to impact as illustrated in Fig. 90. This was recog-

nized by the early hydraulicians who, after defining the friction

lu ad and friction factor as in (90), by the formula

endeavored to express / in terms of the velocity v. Thus,
D '

Aubisson"deduced

0.00484

and Weisbach advocated the form

0.0012,
,

/ = 0.0144 H
fl

Darcy, on the other hand, expressed / in terms of d, namely,

,
, 0.00167

/ = 0.0199 + j~

All these expressions are for English measures, v being in feet

per second and d in feet. Later investigations show, however,

that / varies with both v and d, and the best that can now be

done is to tabulate its values as in Table 900. In fact it may
be said that the theory of the flow of water in pipes at common
velocities is not yet well understood.

Many attempts have been made to express the velocity of

flow in a long pipe by an equation of the form

in which
, /3, and 7 are to be determined from experiments in

which v, d, h, and / have been measured. The exponential for-

mula deduced by Lampe for clean cast-iron pipes varying in

diameter from one to two feet is

65
(110)
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in which d, h, and / are to be taken in feet, and v will be found in

feet per second. From this are derived

q
= 61.0 <2

2-694
(V/)-

555 d = 0.217 (f-
m

(l/ti)
Q -m

by which discharge and diameter may be computed. Other

investigators find different values of and 7, the values /9 = f

and 7 = ^ being frequently advocated.

The formula of Chezy (Art. 113), that of Kutter (Art. 118),

that of Bazin (Art. 122), and that of Williams and Hazen (Art.

124), are often used for long pipes, care being taken to select the

proper value of c for the first, of n for the second, of m for the

third, and of c for the fourth. The formulas of Kutter and Bazin

are sometimes more advantageous than the others since in using

them the roughness of the surface of the pipe can better be

taken into account.

The formulas of this chapter do not apply to very small pipes

and very low velocities, and it is well known that for such condi-

tions the loss of head in friction varies as the first power of the velocity.

This was shown in 1843 by Poiseuille, who made experiments in order

to study the phenomena of the flow of blood in veins and arteries.

For pipes of less than 0.03 inches diameter he found the head h to

be given by h = C\li)/dz where Ci is a constant factor for a given tem-

perature, v is the velocity, d the diameter, and / the length of the pipe.

Later researches indicate that the laws expressed by this equation

also hold for large pipes provided the velocity be very small, and that

there is a certain critical velocity at which the law changes and beyond
which h = Czlv

2

/d, as for the common cases in engineering practice.

This critical point appears to be that where the filaments cease to move
in parallel lines and where the impact disturbances illustrated in Fig.

90 begin. For a very small pipe the velocity may be high before this

critical point is reached
;
for a large pipe it happens at very low veloci-

ties. Experiments devised by Reynolds enable the impact disturb-

ance to be actually seen as the critical velocity is passed, so that its

existence is beyond question. It may also be noted that the velocity

of flow through a submerged sand filter bed varies directly as the first

power of the effective head.

Prob. 110. Solve Problems 94 and 95 by the use of the above -formulas

of Lampe.
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ART. 111. COMPUTATIONS IN METRIC MEASURES

Nearly all the formulas of this chapter are rational in form, the

coefficient of velocity q, the factors / and /lf and the factors m, m lt

f2, and m' are abstract numbers which have the same values in all

systems of measures.

(Art. 90) The mean value of the friction factor/ is 0.02, and Table

Ilia gives closer values corresponding to metric arguments. For

TABLE Ilia. FRICTION FACTORS FOR CLEAN IRON PIPES

Arguments in Metric Measures

Diameter in

Centimeters
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TABLE 1116. FRICTION HEAD FOR 100 METERS OF CLEAN IRON

PIPE

Metric Measures

Diameter in

Centimeters
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in which </, //, and / are in meters, v in meters per second, and q in

cubic meters per second.

Prob. llOti. Compute the diameter, in centimeters, for a pipe to de-

liver 500 liters per minute under a head of 2 meters, when its length is 100

meters. Also when the length is 1000 meters.

Prob. 1 lOb. Compute the velocity-head and discharge for a pipe i meter

in diameter and 856 meters long under a head of 64 meters. Compute the

same quantities when a smooth nozzle 5 centimeters in diameter is attached

to the end of the pipe.

Prob. HOc. A compound pipe has the three diameters 15, 20, and 30

centimetersa^the lengths of which are 1 50, 600, and 430 meters. Compute
the discharge under a head of 16 meters.

Prob. HOrf. A steel-riveted pipe 1.5 meters in diameter is 7500 meters

long. Compute the velocity and discharge under a head of 30.5 meters.

Prob. llOe. The value of Ci in Poiseuille's formula for small pipes is

0.0000177 for English measures at 10 centigrade. Show that its value is

0.0000690 for metric measures.

Prob. HO/. In Fig. 1056 let the pipe AB be 3000 meters long and 30
centimeters in diameter, BCD be 800 meters long and 20 centimeters in diam-

eter, BCE be 1000 feet long and 20 centimeters in diameter, and EF be

300 meters long and 30 centimeters in diameter. Compute the velocity and

discharge for each pipe when the total lost head H is 12.5 meters.
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CHAPTER 9

FLOW IN CONDUITS AND CANALS

ART. 112. DEFINITIONS

From the earliest times water has been conveyed from place

to place in artificial channels, such as troughs, aqueducts, ditches,

and canals, there being no head to cause the flow except that due

to the slope. The Roman aqueducts were usually rectangular

channels about 2\ feet wide and 5 feet deep, lined with cement,

sometimes running underground and sometimes supported on

arches. The word " conduit" will be used as a general term for

a channel of any shape lined with timber, mortar, or masonry,
and will also include large metal pipes, troughs, and sewers.

Conduits may be either open, as in the case of troughs, or closed,

as in sewers and most aqueducts. Ditches and canals are con-

duits in earth without artificial lining. Most of the principles

relating to conduits and canals apply also to streams, and the

word
"
channel

"
will be used as applicable to all cases.

The wetted perimeter of the cross-section of a channel is

that part of its boundary which is in contact with the water.

Thus, if a circular sewer of diameter d be half full of water, the

wetted perimeter is \-ird. In this chapter the letter p will desig-

nate the wetted perimeter.

The hydraulic radius of a water cross-section is it's area divided

by its wetted perimeter, and the letter r will be used to designate

it. If a is the area of the cross-section, the hydraulic radius of

that section is found by
r = a/p

The letter r is of frequent occurrence in formulas for the flow

in channels
;
it is a linear quantity which is always expressed in

the same unit as p, and hence its numerical value is different in
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different systems of measures. It is frequently called the hy-
draulic depth or hydraulic mean depth, because for a shallow

section its value is but little

less than the mean depth of

the water. Thus, in Fig. 1 12,

if b be the breadth on the

water surface, the mean depth is a/b, and the hydraulic radius is

a/p\ and these are nearly equal, since the length of p is but

slightly larger than that of b.

The hydraulic radius of a circular cross-section filled with

water is one-fourth of the diameter
;
thus

r = a/p = \ Trd^/TTd
= \d

The same value is also applicable to a circular section half filled

with water, since .then both area and wetted perimeter are one-

half their former values.

The slope of the water surface in the longitudinal section,

designated by the letter s, is the ratio of the fall h to the length

/ in which .that fall occurs, or

s = h/l

The slope is hence expressed as an abstract number, which is in-

dependent of the system of measures employed. To determine

its value with precision h must be obtained by referring the water

level at each end of the line to a bench-mark by the help of a hook

gage or other accurate means, the benches being connected by
level lines run with care. The distance / is not measured hori-

zontally but along the inclined channel, and it should be of con-

siderable length in order that the relative error in h may not be

large. If s = o there is no slope and no flow; but when there

is even the smallest slope the force of gravity furnishes a com-

ponent acting down the inclined surface, and motion ensues.

The velocity of flow evidently increases with the slope.

The flow in a channel is said to be steady when the same quan-

tity of water per second passes through each cross-section. If

an empty channel be filled by admitting water at its upper end,

the flow is at first non-steady or variable, for more water passes



274 Chap. 9. Flow in Conduits and Canals

through one of the upper sections per second than is delivered

at the lower end. But after sufficient time has elapsed the flow

becomes steady; when this occurs the mean velocities in different

sections are inversely as their areas (Art. 31).

Uniform flow is that particular case of steady flow where all

the water cross-sections are equal, and the slope of the water

surface is parallel to that of the bed of the channel. If the sec-

tions vary, the flow is said to be non-uniform, although the con-

dition of steady flow is still fulfilled. In this chapter only the

case of uniform flow will be discussed.

The velocities of different filaments in a channel are not equal,

as those near the wetted perimeter move slower than the central

ones, owing to the retarding influence of friction. The mean of all

the velocities of all the filaments in a cross-section is called the

mean velocity v. Thus if v', v", etc., be velocities of different

filaments,

in which n is the number of filaments. Let a be the area of

the cross-section and let each filament have the small cross-section

of area a'
;
then n = a/ a', and hence,

av = a'(v' + 1)" 4- etc.)

But the second member is the discharge g; that is, the quantity

of water passing the given cross-section in one second. There-

fore the mean velocity may be also determined by the relation

v = qfa

The filaments which are here considered are in part imaginary,

for experiments show that there is a constant sinuous motion of

particles from one side of the channel to the other. The best

definition for mean velocity hence is, that it is a velocity which

multiplied by the area of the cross-section gives the discharge,

or v = q/a.

Prob. 112. Compute the hydraulic radius of a rectangular trough

whose width is 5.6 feet and depth 2.8 feet.
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ART. 113. FORMULA FOR MEAN VELOCITY

When all the wetted cross-sections of a channel are equal,

and the water is neither rising nor falling, having attained the

condition of steady flow, the flow is said to be uniform. This is

the case in a conduit or canal of constant size and slope whose

supply does not vary. The same quantity of water per second

then passes each cross-section, and consequently the mean veloc-

ity in each section is the same. This uniformity of flow is due

to the resistances along the interior surface of the channel, for

were it perfectly smooth the force of gravity would cause the

velocity to be accelerated. The entire energy of the water due

to the fall h is hence expended in overcoming resistances caused

by surface roughness. A part overcomes friction along the sur-

face, but most of it is expended in eddies of the water, whereby

impact results and heat is generated. A complete theoretic

analysis of this complex case has not been perfected, but if the

velocity be not small, the discussion given for pipes in Art. 90

applies equally well to channels.

Let W be the weight of water passing any cross-section in

one second,F the force of friction per square unit along the surface,

p the wetted perimeter, and h the fall in the length /. The poten-

tial energy of the fall is Wh. The total resisting friction is Fpl,

and the energy consumed per second is Fplv, if v be the velocity.

Accordingly Fplv equals Wh. But the value of W is wav, if w
is the weight of a cubic foot of water and a the area of the

cross-section in square feet. Therefore Fpl = wah, and since

a/p is the hydraulic radius r, and h/l is the slope 5, this reduces

to F = wrs, which is an approximate expression for the resisting

force of friction on one square unit of the surface of the channel.

In order to establish a formula for the mean velocity the value

of F must be expressed in terms of w, and this can only be done

by studying the results of experiments. These indicate that F
is approximately proportional to the square of the mean velocity.

Therefore if c is a constant, the mean velocity is

(113)
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which is the formula first advocated by Chezy in. 1775. This is

really an empirical expression, since the relation between F and

v is derived from experiments. The coefficient c varies with the

roughness of the bed and with other circumstances.

Another method of establishing Chezy's formula for channels

is to consider that when a pipe on a uniform slope is not under

pressure, the hydraulic gradient coincides with the water surface.

Then formula (90) may be used by replacing h" by h and d by
its value 4^. Accordingly

= - or z,=
T2g

in which the quantity V8g// is the Chezy coefficient.

This coefficient c is different in different systems of measures

since it depends upon g. For the English system it is found that

c usually lies between 30 ,and 160, and that its value varies with

the hydraulic radius and the slope, as well as with the roughness

of the surface. To determine the value of c for a particular case

the quantities v, r, and 5 are measured, and then c is computed.
To find r and s linear measurements and leveling are required.

To determine v the flow must be gaged either in a measuring
vessel or by an orifice or weir, or, if the channel be large, by floats

or other indirect methods described in the next chapter, and then

the mean velocity v is computed from v =
q/a. It being a matter

of great importance to establish a satisfactory formula for mean

velocity, thousands of such gagings have been made, and from

the records of these the values of the coefficients given in the

tables in the following articles have been deduced.

Prob. 113. Compute the value of c for a circular masonry conduit

6 feet in diameter which delivers 65 cubic feet per second when running half

full, its slope or grade being 1.5 feet in IOQO feet.

ART. 114. CIRCULAR CONDUITS, FULL OR HALF FULL

When a circular conduit of diameter d runs either full or half

full of water, the hydraulic radius is \d, and the Chezy formula

for mean velocity is

i)
= c ~Vrs = c *
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The velocity can then be computed when c is known, and for

this purpose Table 114 gives Hamilton Smith's values of c for

pipes and conduits having quite smooth interior surfaces and no

sharp bends.* The discharge per second then is

q
= av = c \a Vds

in which a is either the area of the circular cross-section or one-

half that section, as the case may be.

TABLE 114. COEFFICIENTS c FOR CIRCULAR CONDUITS

Diameter
infect



278 Chap. 9. Flow in Conduits and Canals

For this velocity the table gives 147 for c
;
hence

v = 147 X | Vo.oo6 = 5.7 feet per second.

Again, from the table c = 150, and

v= 150 X \ Vo.oo6 = 5.8 feet per second.

This shows that 150 is a little too large ;
for c =

149.5, ^ is found

to be 5.79 feet per second, which is the final result. The discharge

per second now is

q
=

0.7854 X | X 36 X 5.79
=

81.9 cubic feet,

which is the probable flow under the given conditions.

To find the diameter of a circular conduit to discharge a given

quantity under a given slope, the area a is to be expressed in terms

of d in the above equation, which is then to be solved for d
; thus,

the first being for a conduit running full and the second for one

running half full. Here c may at first be taken as 125 ;
then d

is computed, the approximate velocity found from v = q/\TT(P,

and with this value of v a value of c is selected from the table,

and the computation for d is repeated. This process may be

continued until the corresponding values of c and v are found to

be in close agreement.

As an example of the determination of diameter let it be re-

quired to find d when q
=

81.9 cubic feet per second, 5 = o.ooi,

and the conduit runs full. For =
125 the formula gives d =

4.9

feet, whence v = 4.37 feet per second. From the table c may be

now taken as 142, and repeating the computation d = 4.64 feet,

whence v = 4.84 feet per second, which requires no further

change in the value of c. As the tabular coefficients are based

upon quite smooth interior surfaces, such as occur only in new,

clean, iron pipes, or with fine cement finish, it might be well to

build the conduit 5 feet or 60 inches in diameter. It is seen

from the previous^ example that a semicircular conduit of 6 feet

diameter carries the same amount of water as is here carried by
one of 4.64 feet diameter which runs entirely full.
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Circular conduits running full of water are long pijx-s and all

the formulas and methods of Arts. 94 and 95 can be applied also

to their discussion. From Art. 113 it is seen that

c = or c = i6.04/ v'/

in which/ is to be taken from Table 90a. Values of c computed in

this manner will not generally agree closely with the coefficients

of Smith, partly because the values of / are given only to three

decimal places, and partly because Table 90a for pipes was con-

structed from experiments on smoother surfaces than those of

conduits. ^An agreement within 5 per cent in mean velocities de-

duced by different methods is all that can generally be expected

in conduit computations, and if the actual discharge agrees as

closely as this with the computed discharge, the designer can

be considered a fortunate man.

All of the laws deduced in the last chapter regarding the relation

between diameter and discharge, relative discharging capacity,

etc., hence apply equally well to circular conduits which run either

full or half full. If the conduit be full, it matters not whether it be

laid truly to grade or whether it be under pressure, since in either case

the slope 5 is the total fall h divided by the total length. Usually,

however, the word "conduit" implies a uniform slope for considerable

distances, and in this case the hydraulic gradient coincides with the

surface of the flowing water.

Prob. 114. Find the diameter of a circular conduit to deliver when

running full 16 500 ooo gallons per day, its slope being 0.00016.

ART. 115. CIRCULAR CONDUITS, PARTLY FULL

Let a circular conduit with the slope 5 be partly full of water,

its cross-section.being a and hydraulic radius r. Then the mean

velocity and the discharge are given by

i)
= c Vrs q

= ca Vrs

The mean velocity is hence proportional to Vr and the discharge

to a Vr, provided that c be a constant. Since, however, c varies

slightly with r, this law of proportionality is only approximate.
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When a circular conduit of diameter d runs either full or half

full, its hydraulic radius is \d (Art. 112). If it is filled to the

depth d' (Fig. 115), the wetted perimeter is

p = \ vrd + d arc sin

and the sectional area of the water surface is

Fig. 115. a =

From these p and a can be computed, and then r is found by

dividing a by p. Table 115 gives values of p, a, and r for a circle

of diameter unity for different depths of water. To find from it

the hydraulic radius for any other circle it is only necessary to

multiply the tabular values of r by the given diameter d. The

table shows that the greatest value of the hydraulic radius occurs

when d' = 0.8 id, and that it is but little less when d' = o.8d
L

In the fifth and sixth columns of the table are given values of V/

and a^/r for different depths in the circle of diameter unity;

these are approximately proportional to the velocity and discharge

which occur in a circle of any size. The table shows that the

greatest velocity occurs when the depth of the water is about eight-

TABLE 115. CROSS-SECTIONS OF CIRCULAR CONDUITS

Depth

*
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tenths of tin- diameter, and that the greatest discharge occurs

when the depth is about 0.95^, or $ of the diameter.

By the help of Table 1 15 the velocity and discharge may be com-

puted when c is known, but it is not possible on account of the luck

of experimental knowledge to state precise values of c for different

values of r in circles of different sizes. However, it is known that an

increase in r increases c, and that a decrease in r decreases c. The

following experiments of Darcy and Bazin show the extent of this

variation for a semicircular conduit of 4. i feet diameter, and they also

teach that the nature of the interior surface greatly influences the values

of c. Twoxonduits were built, each with a slope s = 0.0015 a"d d =

4.1 feet. One was lined with neat cement, and the other with a mor-

tar made of cement with one-third fine sand. The flow was allowed

to occur with different depths, and the discharges per second were

gaged by means of orifices
;
this enabled the velocities to be computed,

and from these the values of the coefficient c were found. The fol-

lowing are a portion of the results obtained, d' denoting the depth
of water in the conduit, r the hydraulic radius, v the mean velocity,

and all linear demensions being in English feet :

For cement lining For mortar lining

d' r v c d' r v c

2.05 1.029 6.06 154 2.04 1.022 5.55 142

1.61 0.867 5-29 147 1.69 o.ooo 4.94 135

1.03 0.605 4-i6 138 i.op 0.635 3-8? 125

0.59 0.366 3.02 129 0.61 0.379 2.87 120

It is here seen that c decreases quite uniformly with r, and that the

velocities for the mortar lining. are 8 or 10 per cent less than those for

the neat cement lining.

The value of the coefficient c for these experiments may be roughly

expressed for English measures by

in which c t is the coefficient for the conduit when running half full.

How this will apply to different diameters and velocities is not known ;

when d' is greater than o.8d, it will probably prove incorrect. In

practice, however, computations on the flow in partly filled conduits

are of rare occurrence.

Prob. 115. Compute the hydraulic radius for a circular conduit of 4.1

feet diameter, when it is three-fourths filled with water, and also the mean
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velocity when it is lined with neat cement and laid on a grade of 0.15 feet

per 100 feet.

ART. 116. RECTANGULAR CONDUITS

In designing an open rectangular trough or conduit to carry

water there is a certain ratio of breadth to depth which is most

advantageous, because thereby either the discharge is the greatest

or the least amount of material is required for its construction.

Let b be the breadth and d the depth of the water section, then the

area a is bd and the wetted perimeter p is b + 2d. If the area a is

given, it may be required to find the relation between b and d

so that the discharge may be a maximum. If the wetted perim-

eter p is given, the relation between b and d to produce the same

result may be demanded. It is now to be shown that in both

cases the breadth is double the depth, or b = 2d. This is called

the most advantageous proportion for an open rectangular con-

duit, since there is the least head lost in friction when the velocity

and discharge are the greatest possible.

Let r be the hydraulic radius of the cross-section, or

_a_ bd
T

p b+2d

then, from the Chezy formula (113), the expressions for the veloc-

ity and discharge are

,.- M
b+2d

In these expressions it is required to find the relation between

b and d, which renders both v and q a maximum.

Let the wetted perimeter p be given, as might be the case

when a definite amount of lumber is assigned for the construction

of a trough ;
then b + 2d =

p, or d = \(p b), and

r Ib
3 (p-b} 3

n=cVs\ ^
\ Sp

in which p is a constant. Differentiating either of these expres-

sions with respect to b and equating the derivative to zero, there
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is found b =
J/>, and hence d =

\p. Accordingly b =
2</, or the

breadth is double the depth.

Again, let the area a be given, as might be the case when a

definite amount of rock excavation is to be made
;
then bd = a,

or d = a/b, and

in which a is constant. By equating the first derivative to zero,

there is found b2 = 2a, and hence d2 =
\a. Accordingly b = 2</,

or the bre4th is double the depth, as before.

It is seen in the above cases that the maximum of both v and q

occur when r is a maximum, or when r = \d. It is indeed a

general rule that r should be a maximum in order to secure the

least loss of head in friction. The circle has a greater hydraulic

radius than any other figure of equal area.

In these investigations c has been regarded as constant, al-

though strictly it varies somewhat for different ratios of b to d.

The rule deduced is, however, sufficiently close for all practical

purposes. It frequently happens that it is not desirable to adopt
the relation b = 2d, either because the water pressure on the sides

of the conduit becomes too great or because it is advisable to

limit the velocity so as to avoid scouring the bed of the channel.

Whenever these considerations are more important than that

of securing the greatest discharge, the depth is made less than one-

half the breadth.

The velocity and discharge through a rectangular conduit

are expressed by the general equations

v = c Vrs q
= av = ca vrs

and are computed without difficulty for any given case when the

coefficient c is known. To determine this, however, is not easy,

for it is only from recorded experiments that its value can be

ascertained. When the depth of the water in the conduit is one-

half of its width, thus giving the most advantageous section, the

values of c for smooth interior surfaces may be estimated by the

use of Table 114 for circular conduits, although c is probably
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smaller for rectangles than for circles of equal area. When the

depth of the water is less or greater than \d, it must be remem-

bered that c increases with r. The value of c also is subject to

slight variations with the slope s, and to great variations with the

degree of roughness of the surface.

Table 116, derived from Smith's discussion of the experiments

of Darcy and Bazin, gives values of c for a number of wooden

and masonry conduits of rectangular sections, all of which were

laid on the grade of 0.49 per cent or s = 0.0049. The great influence

TABLE 116. COEFFICIENTS c FOR RECTANGULAR CONDUITS

Unplaned Plank
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ascertain the relation between the bottom width and the depth
of water, in order that the section shall be the most advantageous.
This can be done by the same reasoning as used for the rectangle

in the last article, but it may be well to employ a different method,

and thus be able to consider the subject in a new light.

Let the trapezoidal channel have the bottom width b, the

depth </, and let be the angle made by the side slopes with the

horizontal. Let it be required to

discharge q cubic units of water per

second. Now = ca^/rs and the

most advantageous proportions may
be said to be those that will render

the cross-section a a minimum for a given discharge, for thus the

least excavation, will be required. From Fig. 117,

a = d(b + dcot6) p = b+2d/sm0

and from these the value of r may be expressed in terms of a,

d, and 6
; inserting this in the formula for q, it reduces to

d d2

in which the second member is a constant. Obtaining the first

derivative of a with respect to d, and then replacing (f by its

value C2a2
rs, there results

d = 2q
2
/c

2a2
s d= 2r

which is the relation that renders the area a a minimum
;
that is,

the advantageous depth is double the hydraulic radius. Now
since a/p = r, it is easy to show that

or, the top width of the water surface should equal the sum of the

two side slopes in order to give the most advantageous section.

Since c has been regarded constant, the conclusion is not a rigor-

ous one, although it may safely be followed in practice. As

in all cases of an algebraic minimum, a considerable variation

in the value of the ratio d/b may occur without materially effect-

ing the value of the area a. In many cases it is not possible to
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have so great a depth of water as the rule d = 2r requires because

of the greater cost of excavation at such depth, or because width

rather than depth may be needed for other reasons.

When a trapezoidal channel is to be built, the general formulas

v = cVVs and g
= av may be used to obtain a rough approximation

to the discharge, c being assumed from the best knowledge at hand.

The formula of Kutter (Art. 118) or that of Bazin (Art. 122) may be

used to determine c when the nature of the bed of the channel is known.

For a channel already built, computations cannot be trusted to give

reliable values of the discharge on account of the uncertainty re-

garding the coefficient, and in an important case an actual gaging
of the flow should be made. This is best effected by a weir, but if

that should prove too expensive, the methods explained in the next

chapter may be employed to give more precise results than can usually

be determined by computation from any formula.

The problem of determining the size of a trapezoidal channel

to carry a given quantity of water does not require c to be de-

termined with great precision, since an allowance should be made
on the side of safety. For this purpose the following values may
be used, the lower ones being for small cross-sections with rough
and foul surfaces, and the higher ones for large cross-sections

with quite smooth and clean earth surfaces :

For unplaned plank, c = 100 to 120

For smooth masonry, c = 90 to no
For clean earth, c = 60 to 80

For stony earth, c =. 40 to 60

For rough stone, c = 35 to 50
For earth foul with weeds, c = 30 to 50

To solve this problem, let a and p be replaced by their values

in terms of b and d. The discharge then is

Now when q, c, 6, and 5 are known, the equation contains two

unknown quantities, b and d. If the section is to be the most

advantageous, b can be replaced by its value in terms of d as

above found, and the equation then has but one unknown.
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Or in general, if b = md
y
where m is any assumed number, a solu-

tion for the depth gives the formula

= 9
2 (msin0+2)

cot0)
3 sin0

For the particular case where the side slopes are i on i or 6 = 45,
and the bottom width is to be equal to the water depth, or m- i,

this becomes

These formulas are analogous to those for finding the diameter

of pipes and circular conduits, and the numerical operations are

in all respects similar. It is plain that by assigning different

values to m numerous sections may be determined which will

satisfy the imposed conditions, and usually the one is to be se-

lected that will give both a safe velocity and a minimum cost.

In Art. 120 will be found an example of the determination of the

size of a trapezoidal canal.

Prob. 117. If the value of c is 71, compute the depth of a trapezoidal

section to cany 200 cubic feet of water per second, being 45, the slope

5 being o.ooi, and the bottom width being equal to the depth. Compute also

the area of the cross-section and the mean velocity.

ART. 118. KUTTER'S FORMULA

An elaborate discussion of all recorded gagings of channels

was made by Ganguillet and Kutter in 1869, from which an im-

portant empirical formula was deduced for the coefficient c

in the Chezy formula v = c Vrs. The value of c is expressed in

terms of the hydraulic radius r, the slope s, and the degree of

roughness of the surface, and may be computed when these three

quantities are given. When r is in feet and v in feet per second,

Kutter's formula for the Chezy coefficient c is

in which n is an abstract number whose value depends only

upon the roughness of the surface. By inserting this value of
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c in the Chezy formula for v, the mean velocity is made to de-

pend upon r, s, and the roughness of the surface. The following

values of n were assigned by Kutter to different surfaces :

n = 0.009 for well-planed timber,

n = o.oio for neat cement,

n = o.on for cement with one-third sand,

n = 0.012 for unplaned timber,

n = 0.013 f r ashlar and brick work,

n 0.015 for unclean surfaces in sewers and conduits,

n = 0.017 f r rubble masonry,

n = 0.020 for canals in very firm gravel,

n = 0.025 for canals and rivers free from stones and weeds,

n = 0.030 for canals and rivers with some stones and weeds,

n = 0.035 f r canals and rivers in bad order.

The formula of Kutter has received a wide acceptance on

account of its application to all kinds of surfaces. Notwith-

standing that it is purely empirical, and hence not perfect, it is

to be regarded as a formula of great value, so that no design for

a conduit or channel should be completed without employing

it in the investigation, even if the final construction be not based

upon it. In sewer work it is extensively employed, n being taken

as about 0.015. The formula shows that the coefficient c al-

ways increases with r, that it decreases with s when r is greater

than 3.28 feet, and that it increases with s when r is less than 3.28

feet. When r equals 3.28 feet, the value of c is simply i.Sn/n.

It is not 'likely that future investigations will confirm these laws

of variation in all respects.

In the following articles are given values of c for a few cases,

and these might be greatly extended, as has been done by Kutter

and others.* But this is scarcely necessary except for special

lines of investigation, since for single cases there is no difficulty

in directly computing it for given "data. For instance, take a

rectangular trough of unplaned plank 3.93 feet wide on a slope

of 4.9 feet in 1000 feet, the water being 1.29 feet deep. Here

* Flow of Water in Rivers and Other Channels. Translated, with

additions, by Hering and Trautwine, New York, 1889.
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5 = 0.0049, and r = 0.779 feet. Then n being 0.012, the value of

c to be used in the Chezy formula is found to be

00*1
0.012 O.O049 ~

0.0049

The data here used are taken from Table 116, where the actual

value of c is given as 117; hence in this case Kutter 's formula

is about 5 per cent in excess. As a second example, the follow-

ing data from the same table will be taken: a rectangular con-

duit in neat cement, 6 = 5.94 feet, ^ = 0.91 feet, 5 = 0.0049. Here

n =0.010, and r = 0.697 feet. Inserting all values in the formula,

there is found = 148, which is 8 percent greater than the true

value 138. Thus is shown the fact that errors of 5 and 10 per-

cent are to be regarded as common in calculations on the flow

of water in conduits and canals.

Prob. 118. The Sudbury conduit is of horse-shoe form and lined with

brick laid with cement joints one-quarter of an inch thick, and laid on a

slope of 0.0001895. Compute the discharge in 24 hours when the area is 33.31

square feet and the wetted perimeter 15.21 feet.

ART. 119. SEWERS

Sewers smaller in diameter than 18 inches are always circular

in section. When larger than this, they are built with the sec-

tion either circular, egg-shaped, or of the horse-shoe form. The

last shape is very disadvantageous when a small quantity of

sewage is flowing, for the wetted perimeter is then large compared
with the area, the hydraulic radius is small, and the velocity

becomes low, so that a deposit of the foul materials results. As

the slope of sewer lines is often very slight, it is important that

such a form of cross-section should be adopted to render the veloc-

ity of flow sufficient to prevent this deposit. A velocity of 2

feet per second is found to be about the minimum allowable

limit, and 4 feet per second need not be usually exceeded.

The egg-shaped section is designed so that the hydraulic

radius may not become small even when a small amount of
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sewage is flowing. One of the most common forms is that shown

in Fig. 119, where the greatest width DD is two-thirds of the depth
EM. The arch DUD is a semicircle

described from A as a center. The

invert LML is a portion of a circle

described from B as a center, the

distance BA being three-fourths of

DD and the radius BM being one-

half of AD. Each side DL is de-

scribed from a center C so as to be

tangent to the arch and invert:

These relations may be expressed

more concisely by

in which D is the horizontal diameter DD.

Computations on egg-shaped sewers are usually confined to

three cases, namely, when flowing full, two-thirds full, and one-

third full. The values of the sectional areas, wetted perimeters,

and hydraulic radii for these cases, as given by Flynn,* are

Full

Two-thirds full

One-third full

a

1. 1485 D2

0.7558 0*

0.2840 D2

P

3-965 D
2.394 D
1-3750

0.28971?

o.2o66Z>

This shows that the hydraulic radius, and hence the velocity,

is but little less when flowing one-third full than when flowing

with full section.

Egg-shaped sewers and small circular ones are formed by

laying consecutive lengths of clay or cement pipe whose interior

surfaces are quite smooth when new, but may become foul after

use. Large sewers of circular section are made of brick, and are

more apt to become foul than smaller ones. In the separate

system, where systematic flushing is employed and the pipes are

small, foulness of surface is not so common as in the combined

system, where the storm water is alone used for this purpose.

* Van Nostrand's Magazine, 1883, vol. 28, p. 138.
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In the latter case the sizes are computed for the volume of

storm water to be discharged, the amount of sewage being very

small in comparison.

The discharge of a sewer pipe enters it at intervals along

its length, and hence the flow is not uniform. The depth of

the flow increases along the length, and at junctions the size

of the pipe is enlarged. The strict investigation of the problem
of flow is accordingly one of great complexity. But considering

the fact that the sewer is rarely filled, and that it should be made

large enough to provide for contingencies and future extensions,

it appears ^Lhat great precision is unnecessary. The practice,

therefore, is to discuss a sewer for the condition of maximum

discharge, regarding it as a channel with uniform flow. The

main problem is that of the determination of size
;

if the form is

circular, the diameter is found, as in Art. 114, by

d = (8 q/TTC V7) =
1.45 (q/c V5)

1

If the form is egg-shaped and of the proportions above ex-

plained, the discharge when running full is

1.1485 D2c Vo.28g7 Ds

from which the value of D is found to be

Thus, when q has been determined and c is known, the required

sizes for given slopes can be computed. The velocity should also

be found in order to ascertain if it is low enough to prevent

scouring (Art. 135).

Experiments from which to directly determine the coefficient c

for the flow in sewers are few in number, but since the sewage is

mostly water, it may be approximately ascertained from the values

for similar surfaces. Kutter 's formula has been extensively employed
for this purpose, using 0.015 f r tne coefficient of roughness. Table

119 gives values of c for three different slopes and for two classes of

surfaces. The values for the degree of roughness represented by n =

0.017 are applicable to sewers with quite rough surfaces of masonry;
those for n =

0.015 are applicable to sewers with ordinary smooth

surfaces, somewhat fouled or tuberculated by deposits, and are the



292 Chap. 9. Flow in Conduits and Canals

TABLE 119. KUTTER'S COEFFICIENTS c FOR SEWERS

Hydraulic
Radius r

in Feet
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TABLE 120. KUTTER'S COEFFICIENTS c FOR CHANMIS

Hydraulic
K.Kiius r

in Feet
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whence the hydraulic radius is 0.5^, as must be the case for all

trapezoidal channels of most advantageous section. Now,
since d is unknown, c cannot be taken from the table, and as a

first approximation let it be supposed to be 60. Then in the gen-

eral formula for q the above values are substituted, giving

200 = 60 X i.&2&d? Vo.5</Xo.ooi

from which d is found to be 5.8 feet. Accordingly r=2.g feet,

and from the table c is about 71. Repeating the computation
with this value of c, there is found d = 5.44 feet, which, considering

the uncertainty of c, is sufficiently close. The depth may then

be made 5.5 feet, the bottom width is

b = 0.828X5. 5
=

4-55 ^et,

and the area of the cross-section is

a = 1.828 X 5-5
2 =

55.3 square feet,

which gives for the mean velocity

v = =
3.62 feet per second.

55-3

This completes the investigation if the velocity is regarded
as satisfactory. But for most earths this would be too high,

and accordingly the .cross-section of the ditch must be made
wider and of less depth in order to make the hydraulic radius

smaller and thus diminish the velocity.

The following statements show approximately the velocities

which are required to move different materials :

0.25 feet per second moves fine clay,

0.5 feet per second moves loam and earth,

i.o feet per second moves sand,

2.0 feet per second moves gravel,

3.0 feet per second moves pebbles i inch in size,

4.0 feet per second moves spalls and stones,

6.0 feet per second moves large stones.

The mean velocity in a channel may be somewhat larger than

these values before the materials will move, because the velocities

along the wetted perimeter are smaller than the mean velocity.

More will be found on this subject in Art. 135.
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Prob. 120. A ditch is to discharge 200 cubic feet per second with a

mean velocity of 3.4 feet per second. If its bottom width is 16 feet and th-

side slopes are i on i, compute the depth of water and the slope of the ditch.

ART. 121. LARGE STEEL, WOOD, AND CAST-IRON PIPES

Long pipes of large size are usually regarded as conduits even

when running under pressure, for in formula (97)2 the ratio h/l

may be replaced by the slope s and the diameter d is four times

the hydraulic radius r
;
then it becomes

v = V8g/7Vrs = c VW
which is the same as the Chezy formula. Values of c may be

directly computed from observed values of
, r, and s, and this

has been done by many experimenters. When values of c are

known, all computations for long pipes may be made exactly

like those for circular conduits.

In the following Table 121a * are shown the results of experi-

ments on a number of steel pipes ranging from 33 to 108

inches in diameter and from new to 15 years of age. The

experiments were made at velocities ranging from i.o to 6.0 feet

per second, and the values given in the table are those read from

mean curves of the plottings of the results of the experiments.

In the column headed "
Material and Joint" the letters 5 and W

refer to steel and wrought iron respectively, while the letters

B, C, and T refer to the style of the joint used in the construction

of the pipe, B indicating butt, C cylinder, and T taper joint,

respectively. The experiments bracketed together in the first

*
Following are the sources from which the results tabulated in this

table have been obtained :

Nos. i, 2, and 10. Transactions American Society of Civil Engineers,

Vol. 26, p. 203.

Nos. 3, 4, 5, 6, 7, 8, n, 12, 13, 15, 16, 24. Herschel's 115 Experiments,

New York, 1897.

Nos. 9, 14, and 17 are here shown through courtesy of Morris R. Sher-

rerd, Chief Engineer, Department of Public Works, Newark, N.J.

Nos. 18, 19. Transactions American Society of Civil Engineers, Vol.

40, p. 471, and Vol. 44, p. 34.

Nos. 20, 21, 22, and 23. By courtesy of The Jersey City Water Supply

Co., Paterson, N.J.



296 Chap. 9. Flow in Conduits and Canals

^fOOOoO ^rO^'i'ro^'HMTj-OvMOMQOO OMO\oOMOO\i-iOOO

10 co OM M O

8 MOOOOO

O 00 O O O\

00 O O

O O
00 0>

S 2 000^-^OOOM

UUUOUHHH
C/2

00 g Q DODOOQJQJ V V V

OO M < N MOOOOOOOOOOOOOO <N ri

oO-*-t-*'4-Tl-'tTt-^rt-T)-Ttt^f~.t-- t^ t*. i^- r~

8 a



Large Strrl, Wood, and Cast-iron Pipes. Art. 121

column were made a I different ages as shown on the same pipe

and indicate the deterioration which is to be expected with age.

(See Art. 107.) Experiments numbered 12 and 15 are one and

the same and are shown twice in order that comparison may
more readily be made with experiments 13 and 14 and 16 and 17.

Experiments 12 and 15 were made on the entire length of the

pipe referred to, while 13 and 14 were made on its upper end and

16 and 17 on its lower end.

As illustrating the values of n in Kutter's formula for some

of the experiments shown in Table 121a the following, for experi-

ments 1 8 and 19, are here given:

Velocity in feet per second = i.o 2.0 3.0 4.0 5.0

Exp. 18, n = 0.013 0.014 0.015 0.014

Exp. 19,
= 0.018 0.016 0.015 0.015 0.015

For wooden stave pipes the gagings of Noble and those of

Marx, Wing, and Hoskins, already referred to in Art. 108, furnish

the following values of the coefficient c, those given for the 6-foot

diameter in the first line being for new pipe and those in the

second line after two years' use.

Velocity in feet per second, v = i 2 3 45
3.7 feet diameter c = (109) 113 116

4.5 feet diameter c = (112) 122 126 128

6.0 feet diameter c = 100 115 122 125

6.0 feet diameter c = 116 120 121 122 122

Here the two values in parentheses have been found by a graphic

discussion of the results of the observations. For the first of

these pipes the valve of Kutter's n ranges from 0.013 to 0.012,

while for the second and third it is practically constant at 0.013.

Many gagings have been made on cast-iron pipes, and the re-

sults show great variations which can be ascribed to many causes ;

among these may be mentioned the progressive deterioration

due to age as well as that due to the particular kind of water

carried by the pipe, the care with which the pipe has been laid,

and with which the joints have been made. In Table 1216 are

shown the values of the coefficient c for certain pipes of different

diameters and ages and for varying velocities. The friction

factors for these same gagings are given in Art. 106.
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TABLE 1216. ACTUAL COEFFICIENTS c FOR CAST-IRON PIPES

Diameter
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Table 122 gives values of c computed from (122) for these values

of m and for several values of r, from which coefficients may be

selected for particular surfaces. It may be noted that for a per-

TABLE 122. BAZIN'S COEFFICIENTS c FOR CHANNELS

Hydraulic
Radius r

in Feet
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comparison because it is probable that no channel in neat cement

has ever been constructed having a hydraulic radius as great as

7 feet, but it serves to show that these empirical formulas differ

widely when applied to unusual cases. For the present, at least,

the formula of Kutter appears to receive the most general accept-

ance, but undoubtedly the time will come when it will be re-

placed by a more satisfactory one. An actual gaging of the dis-

charge by the method of Art. 131 will always give more reliable

information than can be obtained from any formula.

For a hydraulic radius of 3.28 feet Kutter 's formula for c

reduces to the convenient expression

c=i.8n/n whence v = ^-^

and this may be used for approximate computations when r lies

between 2 and 6 feet. Here n is the roughness factor, the values

of which are given in Art. 118. When r = 3.28 feet, Bazin's

formula gives c = 136 for brickwork, while Kutter's gives c = 140;

for canals in good order Bazin's formula gives c =
69, while

Kutter's gives
=

72. The comparison is very satisfactory, and

so close an agreement is not generally to be expected when com-

putations are made from different formulas. The formula of

Bazin is largely used in France and England, and that of Kutter

irf other countries.

Prob. 122. Solve Problem 118 by the use of Bazin's coefficients.

ART. 123. MASONRY CONDUITS

Masonry conduits or aqueducts for conveying water have

been used since the days of ancient Rome. In cases where large

quantities of water are to be carried on small slopes and where

the topography of the country is at a suitable elevation they
offer the most economical means for its conveyance. The Sud-

bury and Wachusett aqueducts for the supply of Boston, the

Jersey City aqueduct for the supply of that city, the old Croton

and the New Croton aqueducts for the supply of New York City
are among the largest and longest which have yet been constructed.
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In 1912 there are being built the Catskill aqueduct also for New
York City and the Los Angeles aqueduct for the city of Los

Angeles in California. Large portions of these aqueducts are in

tunnels on the hydraulic gradient, and in the case of the Catskill

aqueduct of* a total of no miles of main conduit nearly 30 per-

cent is in rock tunnel from 300 to iioo feet below the surface.

These tunnels are circular in cross-section, and their diameters

range from n to 15 feet.

Relatively few experiments for determining the coefficients

of flow haye been made on these aqueducts. From their gagings

of the Sudbury aqueduct, Fteley and Stearns * determined a

formula for mean velocity. The cross-section of this aqueduct,

which is laid on a slope of 0.0002, consists of a part of a circle 9.0

feet in diameter, having an invert of 13.22 feet radius, whose

span is 8.3 feet and depression 0.7 feet, the axial

depth of the conduit being 7.7 feet. It is lined

with brick, having cement joints J of an inch

thick. The flow was allowed to occur with

different depths, for each of which the discharge

was determined by weir measurement. A dis-

cussion of the results led to the conclusion that in the portion

with the brick lining the coefficient c had the value i27r
>12 when

r is in feet, and hence results the exponential formula

v = 127 r' 12 Vr7= 127 r -62*
- 50

In a portion of this conduit where the brick lining was coated with

pure cement, the coefficient was found to be from 7 to 8 percent

greater than i27r-
12

. In another portion where the brick lining

was covered with a cement wash laid on with a brush, the co-

efficient was from i to 3 percent greater. For a long tunnel in

which the rock sides were ragged, but with a smooth cement in-

vert it was found to be about 40 percent less.

Gagings on the New Croton Aqueduct f showed that the mean

velocity when the aqueduct was new could be represented by the

* Transactions American Society of Civil Engineers, 1883, vol. 13, p. 114.

t Engineering Record, 1895, vol. 32, p. 223.
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expression v = i24r
056 Vs. This aqueduct is constructed of

brick laid in close mortar joints. Its cross-section is shown in

Fig. 1266. It is 13.53 feet in height by 13.6 feet in maximum
width. The radius of its invert is 18.5 feet, the span of the in-

vert chord is 12.0 feet, and the depression of the invert below the

chord is i.o foot. Its slope is 0.0003.

Gagings on various portions of the aqueduct of the Jersey

City Water Supply Company,* a cross-section of which is shown

in Fig. 1235, gave, when the

aqueduct was new, values of the

coefficient c in the Chezy for-

mula of from 122 to 145, while

the average value of n in Kut-

ter's formula was 0.012 7. The
value of the mean velocity in

this conduit is closely given by
the expression v = 13 ir -50 s

050
,

where s is the observed slope

of the water surface. This

slope during the experiments

Fig. 123&. varied from o.oooi i to 0.00036,

the aqueduct being laid on a

slope of 0.000095. This conduit is of concrete which was
cast against smooth wooden forms, the invert being made of

screeded and troweled concrete.

Owing to the fouling of such conduits as the result of vege-
table growths and the deposition of materials from the water, a

diminution in capacity of from 10 to 20 percent with age may be

expected, and accordingly corresponding allowances should be

made in the design.

It is to be noted that Kutter's formula (Art. 118) indicates that

c steadily increases with the hydraulic radius if n and the slope
be constant. The results of the experiments above quoted, how-

ever, indicate that c becomes constant and has a maximum value

*
By courtesy of Jersey City Water Supply Company, Paterson, N. J.
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of not far from 140 for values of the hydraulic radius of 3 feet and

upward.

In an aqueduct of masonry constructed so that the \\au-r will

flow in it with a free surface it will be found that the slope of the water

surface is seldom if ever parallel to the bottom of the aqueduct.

This, of course, is as it should be, since the expression for the slope is

s = Q*/a-c'*r. Here both a and r vary with Q, and it seldom happens
that the value of c realized in the completed structure is the same as

that assumed in the original design. Since the slope of the water

surface is not parallel to that of the bottom of the aqueduct, there

results a condition of steady non-uniform flow, and the formula of

Art. (137) must be employed whenever precise determinations of the

value of c are to be made from the results of experiments.

Prob. 123. Compute the mean velocity in the New Croton Aque-

duct when it is flowing one-half full.

ART. 124. OTHER FORMULAS FOR CHANNELS

Many attempts have been made to express the mean velocity

and discharge in a channel by the formulas

v = Crz
sv q

= aCrxsv

where x and y are derived from the data of observations by pro-

cesses similar to those explained in Art. 42. As a rule these at-

tempts have not proved successful except for special classes of

conduits, as the exponents of r and s vary with different values

of r and with different degrees of roughness. For conduits having

the same kind of surface a formula of this kind may be established

which will give good results. The values x = f and x = J are

frequently advocated, y being not far from J ;
with such values

C is found to vary less for certain classes of surfaces than the c

of the Chezy formula, and this seems to be the only strong argu-

ment in favor of exponential formulas.

Among the many exponential formulas which have been advo-

cated, those derived by Foss may be cited. For surfaces correspond-

ing to Kutter's values of n less than 0.017 he finds*

rv = O*5 or v = C^r^s^

*
Journal of Association of Engineering Societies, 1894, vol. 13, p. 295.
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in which C has the following values :

for n =0.009 o.oio o.on 0.012 0.013 0.015 0.017

C = 23 ooo 19 ooo 15 ooo 12 ooo 10 ooo 8 ooo 6 ooo

For surfaces corresponding to Kutter's values of n greater than 0.018,

his formula is

v
2 = Cr*s or =.C*rM

and the values of C for this case are

for n = 0.020 0.025 0.030 0.035

C=5ooo 3000 2000 1000

For circular sections running full he also proposes the formula s =

o.oo6^q
1

s-/d
5
. These formulas are open to objection on account of

the great range in the values of C.

Tutton*, as the result of a study of many experiments, proposed

the formula v =O(U
~"V, where 5 and r represent the slope and

hydraulic radius as in the Chezy formula. The values of m ranged

from 0.48 for tarred iron pipes to 0.58 for pipes of lead, tin, and zinc,

the average for all cases being m =
0.54. Using this value, the for-

mula became ~ o.es 054
v = Cr s

for which the value of C was given as from 127 to 153 for new cast-

iron pipes, from 83 to 98 for lap-riveted iron pipes, from 127 to 153

for wooden pipes, and about 188 for lead, tin, and zinc pipes.

Williams and Hazen f have discussed experiments on both

pipes and open channels, and have proposed an exponential for-

mula that is equivalent to

in which c has different values for different surfaces and sections,

but its range of values is less than that of the c of the Chezy
formula. The values of c and c are the same when r is i foot and

s is o.ooi. The greater the roughness of the surface, the smaller

is c
;
in general, c is supposed to vary but little for different values

of r. The following shows the range of the mean values of c

found from the records of experiments with different surfaces :

*
Transactions Engineers' Society of Western New York, April, 1896.

t Hydraulic Tables, New York, 1910.
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For coated new cast-iron pipes, from 1 1 1 to 146
For tuberculated cast-iron pipes, from 16 to 112

For riveted pipes, from 97 to 142

For wooden stave pipes, from 113 to 129
For new wrought-iron pipes, from 113 to 124
For fire hose, rubber lined, from 116 to 140
For masonry aqueducts, from 118 to 145

For brick sewers, from 102 to 141

For plank aqueducts, unplaned, from 113 to 120

For masonry sluiceways, from 34 to 75

4lpr canab in earth, from 33 to 71

The authors of this formula suggest that in computations for

pipe capacity c be taken as 100 for cast-iron, 95 for riveted steel,

120 for wooden, no for vitrified pipes, 100 for brick sewers, and

120 for first-class masonry conduits.

The circumstance that values of C in some of the exponen-
tial formulas of this article have a smaller range of values than

the c of the Chezy formula is sometimes cited as an argument
in their favor. While this is a good argument, the fact must

not be overlooked that probably the true theoretic formula for

mean velocity in a pipe or channel is of the form noted in the

first paragraph of Art. 110.

In conclusion, it may be noted that when the velocity is very

low, the Chezy formula is not valid. In such a case the velocity

does not vary with the square root of the slope, but with its first

power, the same conditions obtaining as in pipes (Art. 110). A
glacier moving in its bed at the rate of a few feet per year has a

velocity directly proportional to its slope. Water flowing in a

channel with a velocity less than one-quarter of a foot per second

follows the same law, and the formulas of this chapter cannot be

applied. The formula for this case is v = Cr~s, but values of C
are not known. It is greatly to be desired that series of experi-

ments should be made for determining values of C.

Prob. 124. Compute the fall of. the water surface in a length of 1000

feet for a ditch where v = 3.62 feet per second, r = 2.75 feet, and n = 0.025;

first by Williams and Hazen's formula, and second, by formula (122) and

Bazin's coefficients.
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ART. 125. LOSSES OF HEAD

The only loss of head thus far considered is that due to friction,

but other sources of loss may often exist. As in the flow in pipes,

these may be classified as losses at entrance, losses due to curva-

ture, and losses caused by obstructions in the channel or by

changes in the area of cross-section.

When water is admitted to a channel from a reservoir or pond

through a rectangular sluice, there occurs a contraction similar

to that at the entrance into a pipe, and which may be often ob-

served in a slight depression of the surface, as at D in Fig. 125a.

At this point, therefore, the ve-

locity is greater than the mean

velocity z>,
and a loss of energy

or head results from the subse-

Fi 195o quent expansion, which is ap-

proximately measured by the

difference of the depths d\ and d2 ,
the former being taken at the

entrance of the channel, and the latter below the depression

where the uniform flow is fully established. According to the

experiments of Dubuat, made late in the eighteenth century,

the loss of head for this case is

v
2

di d% =m
2

in which m ranges between o and 2 according to the condition

of the entrance. If the channel be small compared with the

reservoir, and both the bottom and side edges of the entrance

be square, m may be nearly 2
;
but if these edges be rounded,

m may be very small, particularly if the bottom contraction is

suppressed. The remarks in Chap. 5 regarding suppression of

the contraction apply also here, and it is often important to pre-

vent losses due to contraction by rounding the approaches to

the entrance. Screens are sometimes placed at the entrance to

a channel in order to keep out floating matter
;

if the cross-sec-

tion of the channel is n times that of the meshes of the screen,

the loss of head, according to (76) 2 ,
is (n i)V/2g.
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The loss of head due to bends or curves in the channel is small

if the curvature be slight. Undoubtedly every curve offers a

rv-i-tance to the change in direction of the velocity, and thu>

requires an additional head to cause the flow beyond that needed

to overcome the frictional resistances. Several formulas have

been proposed to express this loss, but they all seem unsatisf:u lory,

and hence will not be presented here, particularly as the data

for determining their constants are very

scant. Itjwill be plain that the loss of

head due to a curve increases with its

length, as in pipes (Art. 91). When a

channel turns with a right angle, as in

Fig. 1256, the loss of head may be

taken as equal to the velocity-head,

since the experiments of Weisbach on such bends in pipes in-

dicate that value. In this case there is a contraction of the

stream after passing the corner, and the subsequent expansion

of section and the resulting impact causes the loss of head.

The losses of head caused by sudden enlargement or by sud-

den contraction of the cross-section of a channel may be estimated

by the rules deduced in Arts. 76 and 77. In order to avoid these

losses changes of section should be made gradually, so that energy

may not be lost in impact. Obstructions or submerged dams

may be regarded as causing sudden changes of section, and the

accompanying losses of head are governed by similar laws. The

numerical estimation of these losses will generally be difficult,

but the principles which control them will often prove useful

in arranging the design of a channel so that the maximum work

of the water can be rendered available. But as all losses of head

are directly proportional to the velocity-head v2/2g, it is plain

that they can be rendered inappreciable by giving to the channel

such dimensions as will render the mean velocity very small.

This may sometimes be important in a short conduit or flume

which conveys water from a pond or reservoir to a hydraulic

motor, particularly in cases where the supply is scant, and where

all the available head is required to be utilized.
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If no losses of head exist except that due to friction, this can

be computed from (113) if the velocity v and the coefficient c be

known. For since the value of s is v
2
/c

2
r and also h/l, where //

is the fall expended in overcoming friction, h may be found from

h = ls = lv
2
/c

2
r (125)

but this computation will usually be liable to much error.

As an example of the computations which sometimes occur

in practice the following actual case will be discussed. From a canal

Fig. 125c.

A water is carried through a cast-iron pipe B to an open wooden fore-

bay C, where it passes through the orifice D and falls upon an over-

shot wheel. At the mouth of the pipe is a screen, the area between the

meshes being one-half that of the cross-section of the pipe. The pipe

is 3 feet in diameter and 32 feet long. The forebay is of unplaned

timber, 5 feet wide and 38 feet long, and it has three right-angled bends.

The orifice is 5 inches deep and 40 inches wide, with standard sharp

edges on top and sides and contraction suppressed on lower side so that

its coefficient of contraction is about 0.68 and its coefficient of velocity

about 0.98. The water level in the canal being 3.75 feet above the

bottom of the orifice, it is required to find the loss of head between

the points A and D.

The total head on the center of the orifice is 3.75 0.208 = 3.542

feet. Let vi be the mean velocity in the pipe, v that in the forebay,

and V that in the contracted section beyond the orifice. The area of

the cross-section of the pipe is 7.07 square feet
;
that of the forebay,

taking the depth of water as 3.7 feet, is 18.5 square feet, and that of

the contracted section of the jet issuing from the orifice is 0.945 square
feet. It will be convenient to express all losses of head in terms of the

velocity-head
2

/2g, and hence the first operation is to express i\ and

V in terms of v, or vt
= 2.621; and V =

19.62;. Starting with the screen,

the loss of head due to expansion of section after the water passes

through it is, by Art. 76,

// = (^i-^i)
2

= 6 jg.
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The loss of head in friction in the pipe, using 0.02 for the friction factor,

is, by Art. 90, ,,,/>_ V-"
The loss of head in the expansion of section from the pipe to the fore-

bay is, by Art. 76,

The loss of head in friction in the forebay, taking c from Table 122

for the hydraulic radius 1.5 feet and degree of roughness m =
0.16, is

then found to be

*--a.
C2r 2g

The loss of head in the three right-angled bends of the forebay is esti-

mated, as above noted, by

The loss of head on the edges of the orifice is, by Art. 56,

V2 v2

h' = 0.041 = 15.9
2g 2g

Now the total head is expended in these lost heads and in the velocity-

head of the jet issuing from the orifice, or

v2
,
V2 v

2

3.542
=

29.9 H-- = 417
2g 2g 2g

from which the value of v*/2g is found to be 0.00851 feet. Finally

the total loss of head or fall in the free surface of the water before

reaching the orifice is

(29.9 15.9)
= 14.0 X 0.00851 = 0.119 feet

>

and therefore the water surface at D is 0.119 feet lower than tna* at

A, and the pressure-head on the center of the orifice is 3.433 feet.

This is the result of the computations, but on making measurements

with an engineer's level the water surface at D was found to be 0.125

feet lower than that at A
;
the error of the computed result is there-

fore 0.006 feet.

Prob. 125. Compute from the above data the velocities i\ PI, and V,

and the discharge through the orifice. Show that the head lost in passing

through the screen was 0.059 fee t> which is about one-half of the total.
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ART. 126. VELOCITIES IN A CROSS-SECTION

For a circular conduit running full and under pressure the

velocities in different parts of the section vary similarly to those

in pipes (Art. 86). When it is partly full, so that the water flows

with a free surface, the air resistance along that surface is much

smaller than that along the wetted perimeter, and hence the sur-

face velocities are greater than those near the perimeter. Fig.

126a illustrates the variation of velocities in a cross-section of the

SCALE OF FEET

Fig. 12GJ.

Sudbury conduit when the water was about 3 feet deep, as deter-

mined by the gagings of Fteley and Stearns.* The 97 dots are

the points at which the velocities were measured by a current

meter (Art. 40), and the velocity for each point in feet per second

is recorded below it. From these the contour curves were drawn

which show clearly the manner of variation of velocity throughout
this cross-section. Since the dots are distributed over the area

quite uniformly, that area may be regarded as divided into 97

equal parts, in each of which the velocity is that observed, and

hence the mean of the 97 observations is the mean velocity (Art.

39). Thus is found ^ = 2.620 feet per second, and this is 85 per
cent of the maximum observed velocity.

Similarly Fig. 125& shows the results of an experiment on the

New Croton Aqueduct. f In this case the average velocity de-

* Transactions American Society of Civil Engineers, 1883, vol. 12, p. 324.

f Report of The Aqueduct Commissioners, New York, 1895-1907.
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termined from the 128 individual observations is 3.570, and this

is 89 percent of the maximum observed velocity. A description

of the methods followed in making the gagings on this aqueduct

Average Depth 10.13 ft. November 14th. 1906

is to be found at page 106 of vol. 66, Transactions American So-

ciety of Civil Engineers. See also Art. 123.

An examination of the distribution of velocities in Fig. 126ft

indicates that the maximum velocity does not occur at the center

of the cross-section. This is due to the fact that the aqueduct
at the point where the gaging was taken is located on a curve

which tends to throw the maximum velocity away from the

center and toward the outside of the curve.
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If all the filaments of a stream of water in a channel have the

same uniform velocity v, the kinetic energy per second of the flow

is the weight of the discharge multiplied by the velocity-head ;
or

K = W = wq = wa
2g 2g 2g

in which W is the weight of the water delivered per second, w
is the weight of one cubic unit, q the discharge per second, and a

the area of the cross-section. For this case, therefore, the energy

of the flow is proportional to the area of the cross-section and to

the cube of the velocity. Since, however, the filaments have

different velocities, this expression may be applied to the actual

flow by regarding z> as the mean velocity. To show that this

method will be essentially* correct, Fig. 1260 may be discussed,

and for it the true energy per second of the flow is

97 2 2

now the ratio of this true kinetic energy to the kinetic energy

expressed in terms of the mean velocity is

K
By cubing each individual velocity and also the mean velocity,

there is found K' = 0.9992^, so that in this instance the two

energies are practically equal, and hence it is probable that in

most cases computations of energy from mean velocity give

results essentially correct.

Prob. 126. Draw a vertical plane through the middle of Fig. 126&

and construct a longitudinal vertical section showing the distribution of ve-

locities. Also draw a horizontal plane through the region of maximum ve-

locity and construct a longitudinal horizontal section. Ascertain whether

the curves of velocity for these sections are best represented by parabolas

or by ellipses.

ART. 127. COMPUTATIONS IN METRIC MEASURES

(Art. 113) The coefficient c in the Chezy formula depends upon
the linear unit of measure. Let GI be the value when v and r are ex-

pressed in feet and C2 the value when v and r are expressed in meters,



and let

gruvity.
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i and & be the corresponding values of the acceleration of

Then since c = V8g//, it is seen that

c2 = = CiV9-8o/32.i6 = 0.552 Ci

Hence any value of c in the English system may be transformed into

the corresponding metric value by multiplying by 0.552. The metric

value of c for conduits and canals usually lies between 16 and 100.

(Art. 114) Table 127a gives values of the Chezy coefficient c

for circuhtf-conduits, full or half full. In using it a tentative method

must be employed, and for this purpose there may be used at first,

mean Chezy coefficient c = 68

and then, after v has been computed, a new value of c is taken from the

table and a new v is found. For example, let it be required to find the

velocity and discharge of a circular conduit of 1.5 meters diameter

when laid on a grade of 0.8 meters in 1000 meters. First,

v = 68 X JVi-5 X 0.0008= 1.18 meters per second,

and for this velocity the table gives about 77 for c. A second compu-
tation then gives v = 1.33 meters per second and from the table ci

is 78.2. With this value is found v = 1.35 meters per second, which.

may be regarded as the final result. When running full, the discharge

of this conduit is 0.7854 X i-5
2 X 1.35

=
2.39 cubic meters per second.

TABLE 127a. CHEZY COEFFICIENTS FOR CIRCULAR CONDUITS

Metric Measures

Diameter
in

Meters
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(Art. 115) Table 115 is the same for all systems of measures.

The results in Art. 115, for Bazin's semicircular conduits of 1.25

meters' diameter on a slope s = 0.0015, are as follows, when all dimen-

sions are in meters:

For cement lining For mortar lining

dr

0.625

0.491

0.314

0.180

r v

0.314 1.85

0.264 1.61

0.185 1.27

O.II2 O.92

c

85

81

76

d'

0.625

0.332

0.186

r

0.312

0.275

0.194

0.116

1.69

1-51

1.18

0.88

75

69

66

Here the coefficient c for any depth d r

may be roughly expressed by
Ci $o(%d d'\ where Ci is the coefficient for the conduit half full.

(Art. 116) Table 1276 gives metric values of c for wooden and

rectangular sections on a slope 5 = 0.0049, as determined by the work

of Darcy and Bazin.

TABLE 1276. CHEZY COEFFICIENTS c FOR RECTANGULAR
CONDUITS

Metric Measures

Unplaned Plank
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(Art. 118) When r is in meters and v in meters per second, Kut-
ter's formula takes the form

c = (127),

in which the number n depends upon the roughness of the surface,

its values~being those given in Art. 118. It may be noted that when
the hydraulic radius r is one meter, the value of c is i/n.

(Art. 119) Metric coefficients for sewers will be found in Table

I27c. As these are given to the nearest unit only, the error in using

them is slightly greater than with the larger coefficients of the English

system. In important cases the values of c may be directly computed
from Kutter 's formula.

TABLE 127'c. KUTTER 's COEFFICIENTS c FOR SEWERS

Metric Measures

Hydraulic
Radius r

in Meters
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Table 122 have been computed by (115). In metric measures Bazin's

formula for channels is

v = cV c = - (127) 2

i+ w/Vr
in which m has the same values as those given in Art. 122.

TABLE 127'd. KUTTER'S COEFFICIENTS c FOR CHANNELS

Metric Measures

Hydraulic
Radius r

in Meters
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(Art. 123) The metric formula for the Sudbury conduit is

v = So.gr
062/ 6

,
and Foss' formula Art. 124 for circular conduits

or large pipes when running full is s = o.onSqV/d*.

Prob. 127. Compute the value of c for a circular conduit 1.4 meters

in diameter which delivers 4.86 cubic meters per second when running full,

its slope being 0.008.

Prob. 1276. Find the hydraulic radius for a circular conduit of 1.6

meters dianieter when the water is 1.2 meters deep.

Prob. 127c. If the value of c is 30, compute the depth of a trapezoidal

section to carry 10 cubic meters per second, the slope s being 0.0015, the

bottom width double the depth, and the sides making an angle of 34 with

the horizontal.

Prob I27d. A conduit lined with neat cement has a cross-section of

3.45 square meters and a wetted perimeter of 5.02 meters and its slope is

0.00025. Compute the discharge in liters per 24 hours, (a) by Kutter's

formula, and (b) by Bazin's formula.
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CHAPTER 10

THE FLOW OF RIVERS

ART. 128. GENERAL CONSIDERATIONS

Steady flow in a river channel occurs when the same quan-

tity of water passes each section in each unit of time
;

here the

mean velocities in different sections vary inversely as the areas

of those sections. Uniform flow is that particular case of steady

flow where the sections considered are equal in area. Uniform

flow and some other cases of steady flow will be mainly considered

in this chapter. Non-steady flow occurs when the stage of a

river is rising or falling, and Art. 134 treats of this case.

No branch of hydraulics has received more detailed investiga-

tion than that of the flow in river channels, and yet the subject

is but imperfectly understood. The great object of all these

investigations has been to devise a simple method of determining

the mean velocity and discharge without the necessity of expen-

sive field operations. In general it may be said that this end has

not yet been attained, even for the case of uniform flow. Of

the various formulas proposed to represent the relation of mean

velocity to the hydraulic radius and the slope, none has proved
to be of general practical value except the empirical one of Chezy

given in the last chapter, and this is often inapplicable on account

of the difficulty of measuring the slope 5 and determining the

coefficient c. The fundamental equations for discussing the

laws of variation in the mean velocity v and in the discharge q are

v = c Vrs q
= a - c Vrs

where a is the area of the cross-section and r its hydraulic radius,

and all the general principles of the last chapter are to be taken

as directly applicable to uniform flow in natural channels.



General Considerations. Art. 128

Kutter's formula for the value of c is probably the best in the

present state of science, although it is now generally recognized

that it gives too large values for small slopes. In using it the

coefficients for rivers in good condition may be taken from Table

120, but for bad regimen n is to be taken at 0.03, and for wild tor-

rents at 0.04 or 0.05. It is, however, too much to expect that a sin-

gle formula should accurately express the mean velocity in small

brooks and- large rivers, and the general opinion now is that

efforts to establish such an expression will not prove successful.

In the present state of the science no engineer can afford in any
case of importance to rely upon a formula to furnish anything

more than a rough approximation to the discharge in a given

river channel, but actual field measurements of its velocity must

be made.

When these formulas are used to determine the discharge of

a river, a long straight portion or reach should be selected where

the cross-sections are as nearly as possible uniform in shape and

size. The width of the stream is then divided into a number of

parts and soundings taken at each point of division. The data

are thus obtained for computing the area a and the wetted perim-

eter p, from which the hydraulic depth r is derived. To determine

the slope s a length / is to be measured, at each end of which

bench-marks are established whose difference of elevation is

found by precise levels. The elevations of the water surfaces

below these benches are then to be simultaneously taken, whence

the fall h in the distance / becomes known. As this fall is often

small, it is very important that every precaution be taken to

avoid error in the measurements, and that a number of them be

taken in order to secure a precise mean. Care should be observed

that the stage of water is not varying while these observations

are being made, and for this and other purposes a permanent

gage board must be established. It is also very important that

the points upon the water surface which are selected for compari-

son should be situated so as to be free from local influences such

as eddies, since these often cause marked deviations from the

normal surface of the stream. If hook gages can be used for re-

ferring the water levels to the benches, probably the most accurate



320 Chap. 10. The Flow of Rivers

results can be obtained. It has been observed that the surface

of a swiftly flowing stream is not a plane, but a cylinder, which is

concave to the bed, its' highest elevation being where the velocity

is greatest, and hence the two points of reference should be located

similarly with respect to the axis of the current. In spite of all

precautions, however, the relative error in h will usually be large

in the case of slight slopes, unless / be very long, which cannot

often occur in streams under conditions of uniformity.

Owing to the uncertainty of determinations of discharge made
in the manner just described, the common practice is to gage the

stream by velocity observations, to which subject, therefore, a

large part of this chapter will be devoted. The methods given

are equally applicable to conduits and canals, and in Art. 133 will

be found a summary which briefly compares the various processes.

Prob. 128. Which has the greater discharge, a stream 2 feet deep and

85 feet wide on a slope of i foot per mile, or a stream 3 feet deep and 40 feet

wide on a slope of 2 feet per mile ?

ART. 129. VELOCITIES IN A CROSS-SECTION

The mean velocity v is the average of all the velocities of all

the small sections or filaments in a cross-section (Art. 112). Some

of these individual velocities are much smaller, and others ma-

terially larger, than the mean velocity. Along the bottom of

the stream, where the frictional resistances are the greatest, the

velocities are the least
; along the center of the stream they are

the greatest. A brief statement of the general laws of variation

of these velocities will now be made.

In Fig. 129 there is shown at A a cross-section of a stream

with contour curves of equal velocity ;
here the greatest velocity

is seen to be near the deepest part of the section a short distance

below the surface. At B is shown a plan of the stream with ar-

rows roughly representing the surface velocities; the greatest

of these is seen to be near the deepest part of the channel, while

the others diminish toward the banks, the curve showing the law

of variation resembling a parabola. At C is shown by arrows

the variation of velocities in a vertical line, the smallest being
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at the bottom and the largest a short distance below the surface
;

concerning this curve there has been much contention, but it is

commonly thought to

be a parabola whose axis

is horizontal. These are

the general laws of the

variation of velocity

throughout^~the cross-

section
;

the particular
Fig. 129.

relations are of a com-

plex character, and vary so greatly in channels of different kinds

that it is difficult to formulate them, although many attempts
to do so have been made. Some of these formulas which con-

nect the mean velocity with particular velocities, such as the

maximum surface velocity, mid-depth velocity in the axis of

the stream, etc., will be given in Art. 132.

Humphreys and Abbot deduced in 1861 for the Mississippi

River * an equation of the mean curve of mean velocities in a

vertical line, namely,

V = 3.261- 0.7922 (y/d)
2

in which V is the velocity at any distance y above or below the

horizontal axis of the parabolic curve and d is the depth of the

water, the axis being at the distance 0.297^ below the surface.

The depth of the axis was found, however, to vary greatly with

the wind, an up-stream wind of force 4 depressing it to mid-depth,

and a down-stream wind of force 5.3 elevating it to the surface.

In a straight channel having a bed of a uniform nature the

deepest part is near the middle of its width, while the two sides

are approximately symmetrical. In a river bend, however, the

deepest part is near the outer bank, while on the inner side the

water is shallow; the cause of this is undoubtedly due to the

centrifugal force of the current, which, resisting the change in

direction, creates currents which scour away the outer bank or

prevent deposits from forming there. It is well known to all

*
Physics and Hydraulics of the Mississippi River, edition of 1876, p. 243.
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that rivers of the least slope have the most bends
; perhaps this

is due to the greater relative influence of such cross currents.

(See Art. 156.)

The theory of the flow of water in channels, like that of flow in

pipes, is based upon the supposition of a mean velocity which is the

average of all the parallel individual velocities in the cross-section.

But in fact there are numerous sinuous motions of particles from the

bottom to the surface which also consume a portion of the lost head.

The influence of these sinuosities is as yet but little understood
;

when in the future this becomes known, a better theory of flow in

channels may be possible.

Prob. 129. Show that the above formula for velocities in a vertical

can be put into the form

V =
3.19 + 0.471 (x/d)

-
0.792 (x/dY

in which x is the depth below the surface.

ART. 130. VELOCITY MEASUREMENTS

One of the methods for measuring the discharge of streams

which has been extensively used is by observing the velocity of

flow by the help of floats. Of these there are three kinds, sur-

face floats, double floats, and rod floats. Surface floats should

be sufficiently submerged so as to thoroughly partake of the

motion of the upper filaments, and should be made of such a form

as not to readily be affected by the wind. The time of their

passage over a given distance is determined by two observers at

the ends of a base on shore by stop-watches ;
or only one watch

may be used, the instant of passing each section being signaled

to the time-keeper. If / be the length of the base, and / the time

of passage in seconds, the velocity of the float is v =
l/t. When

there are many observations, the numerical work of division is

best done by taking the reciprocals of / from a table and multi-

plying them by /, which for convenience may be an even number,

such as 100 or 200 feet.

A sub-surface float consists of a small surface float connected

by a fine cord or wire with the large real float, which is weighted
so as to remain submerged and keep the cord reasonably taut.

The surface float should be made of such a form as to offer but
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slight resistance to the motion, while the lower float is large, it

bring the object of the combination to determine the velocity of

the lower one alone. This arrangement has been extensively

used, but it is probable that in all cases the velocity of the large

float is somewhat affected by that of the upper one, as well as

by the friction of the cord. In general the use of these floats is

not to be encouraged, if any other method of measurement can

be devised.^

The rod float is a hollow cylinder of tin, which can be weighted

by dropping in pebbles or shot so as to stand vertically at any

depth. When used for velocity determinations, they are weighted

so as to reach nearly to the bottom of the channel, and the time

of passage over a known distance determined as above explained.

It is often stated that the velocity of a rod float is the mean

velocity of all the filaments in contact with it. Theoretically

this is not the case, but the rod moves a little slower. However,

in practice a rod cannot reach quite to the bed of the stream, and

Francis has deduced the following empirical formula for finding

the mean velocity Vm of all the filaments between the surface and

the bed from the observed velocity Vr of the rod :

in which d is the total depth of the stream and d' the depth of

water below the bottom of the rod.* This expression is probably

not a valid one, unless d' is less than about one-quarter of d\

usually it will be best to have d' as small as the character of the

bed of the channel will allow.

The log formerly used by seamen for ascertaining the speed

of vessels may be often conveniently used as a surface float when

rough determinations only are required, it being thrown from a

boat or bridge. The cord of course must be previously stretched

when wet, so that its length may not be altered by the immersion ;

if graduated by tags or knots in divisions of six feet, the log may
be allowed to float for one minute, and then the number of divi-

* Lowell Hydraulic Experiments, 4th Edition, p. 195.
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sions run out in this time will be ten times the velocity in feet

per second.

The determination of particular velocities in streams by means

of floats appears to be simple, but in practice many uncertainties are

found to arise, owing to wind, eddies, local currents, etc., so that a num-

ber of observations are required to obtain a precise mean result.

For conduits, canals, and for many rivers the use of a current

meter will often be found to be more satisfactory and less expensive

if many observations are required. Comparisons between the re-

sults of float and rod gagings have been made by Murphy.* These

comparisons include those made at the Cornell University labora-

tory between the weir and the current meter in 1900.

Other current indicators less satisfactory for work in streams

are the Pitot tube and the hydrometric pendulum, shown in Fig.

1300. The former has not been found valuable for river measure-

ments, although it has proved to be an instrument of great pre-

cision for other classes of work

(Art. 41), and the latter, although

used by some of the early hydrau-

licians, has long been discarded as

giving only rough indications. The

same may be said of the hydro-

metric balance, in which weights

measure the intensity of the pressure of the current, and of the

torsion balance, in which the pressure of the current on a sub-

merged plate causes the tightening of a spring. These instru-

ments were used only for measurements of velocities in small

channels, and they are now mere curiosities.

The current meter, described in Art. 40, is generally operated
from a bridge or cable in the case of a small stream, but it must

be often operated from an anchored boat in large rivers. In the

latter case precise measurements of surface velocities may be

difficult on account of the eddies around the boat. Even when

operated from a bridge, it is not easy to obtain successful results

when the velocity exceeds 4 or 5 feet per second, and special

Fig. 130o.

Water Supply and Irrigation Paper No. 95, Washington, 1904.
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-
")

I

Water Surface

expedients are necessary to keep the nu-ier in position, li

ever, the current meter, accurately rated, will in general do U t-

ter work than can be done by floats.

In using the current meter for the determination of velocity four

principal methods are used on the work of the U. S. Geological Survey ;

these have been 'reviewed by

Hoyt.* In the first a vertical

velocity curve is determined by

placing trie" meter at regular

vertical intervals from the sur-

face of the water to the bottom

of the stream and observing

the velocity at each such in-

terval. The points so selected

are usually from 10 to 20 per-

cent of the water depth apart.

On plotting the velocities ob-

tained, a curve results which

graphically indicates the varia-

tions in the velocity as they

are dependent on the depth.

The average velocity in the

vertical can be determined by

averaging all of the observa-

tions, or more accurately by

ascertaining the area fixed by the curve and the axis of ordinates

and then dividing this area by the depth of the water in the ver-

tical. Thus in Fig. 1306 the mean velocity is the area ABC divided

by the depth 9.5 feet.

In the second of these four methods the velocities at distances

below the surface of 0.2 and 0.8 of the depth are determined and the

mean taken as the average velocity in the vertical. Many observa-

tions have proven that this method is correct, and theoretically it

is based on the mathematical fact that if the velocity curve be a

parabola, then the mean ordinate will be the average of these at

points whose abscissas are 0.2114 and 0.7886.

The third of these methods consists in observing the velocity

/
X Bottom

1 2 3

"Velocity in Feet per Second

Fig. 1306.

* Transactions American Society of Civil Engineers, 1910, vol. 66.
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at a distance below the surface equal to 0.6 of the water depth. This

procedure is also based on the assumption that the velocity curve is

a parabola whose axis is parallel to the water surface and lies below

it from o to 0.3 of the water depth. Mathematically, therefore, the

mean ordinate which represents the mean velocity lies between the

points whose abscissas are 0.58 and 0.67 of the water depth.

In the fourth method the mean velocity is determined by observ-

ing the velocity at a point from 0.5 to i.o feet below the water

surface and applying a coefficient determined by observation. This

coefficient ranges from 0.78 to 0.98, and Hoyt* recommends the fol-

lowing. For average streams in moderate freshets 0.90 ; during floods

from 0.90 to 0.95, and for ordinary stages of flow from 0.85 to 0.90.

In the following tabulation are shown the results obtained in

476 vertical velocity curves* on 34 rivers in various parts of the United

States. The depths of these streams ranged from 1.6 to 27.5 feet and

the observed velocities from 0.25 to 9.59 feet per second. The figures

given are the coefficients by which the average velocities determined

by the various methods should be multiplied in order to obtain the

mean velocity as determined from the vertical velocity curve in the

first method above described.
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tin maximum velocity is to be found at from 35 to 40 percent of the

water depth below the under surface of the ice and that the mean

velocity occurs at two points, the first from 0.08 to 0.13 and the second

from 0.68 to 0.74 of the water depth below the under surface of the ice.

The so-called integration method of determining the average

velocity in a vertical consists in moving the meter at a uniform rate

from the surface to the bottom and back again. Each point is thus

passed over twice, and if all other conditions are the same, the

average velocity indicated should be the mean velocity in the ver-

tical. This method has, since 1900, come to be practically superseded

by those before described.

Prob. 130. A rod float runs a distance of 100 feet in 42 seconds, the

depth of the stream being 6 feet, while the foot of the rod is 6 inches above

the bottom. Compute the mean velocity in the vertical.

ART. 131. GAGING THE DISCHARGE

For a very small stream the most precise method of rinding

the discharge is by means of a weir constructed for that purpose.

Streams of considerable size often have dams built across them,

and these may also be used like weirs with the help of the coeffi-

cients given in Art. 69, if there be no leakage through the dam.

When there are no dams, the method now to be explained is gen-

erally employed. In all cases the first step should be to set up
a vertical board gage, graduated to feet and tenths, and locate

its zero with respect to the datum plane used in the vicinity, so

that the stage of water may at any time be determined by

reading the gage.

The place selected for the gaging should be one where the

channel is free from obstructions and as nearly as possible free

from bends and curves for some distance both up and down

stream. One or more sections at right angles to the direction of

the current are to be established, and soundings taken at inter-

vals across the stream upon them, the water gage being read

while this is done. The distances between the places of soundings

are measured either upon a cord stretched across the stream or

by other methods known to surveyors. The data are thus ob-

tained for determining the areas a\, a2 , #3, etc., shown upon Fig.
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131 a, and the sum of these is the total area a. Levels should be

run out upon the bank beyond the water's edge, so that in case of

a rise of the stream the ad-

ditional areas can be de-

duced. If a current meter

is used, but one section is

Fig - 131a '

needed
;

if floats are used,

at least two are required, and these must be located at a place

where the channel is of as uniform size as possible.

The mean velocities vi, %, 3, etc., are next to be determined

for each of the sub-areas. With a current meter this may be done

by starting at one side of a subdivision, and lowering it at a uni-

form rate until the bottom is nearly reached, then moving it a

few feet horizontally and raising it to the surface, then moving
it a few feet horizontally and lowering it, and thus continuing

until the sub-area has been covered. The velocity then deduced

from the whole number of revolutions during the time of im-

mersion is the mean velocity for the sub-area. Or, by using any
one of the methods for determining the mean velocity in the ver-

tical as described in Art. 130 the mean velocity may be deter-

mined. When rod floats are used, they are started above the

upper section, and the times of passing to the lower one noted,

as explained in Art. 130, the velocity deduced from a float at

the middle of a sub-area being taken as the mean for that area.

It will be found that the rod floats are more or less affected

by wind, the direction and intensity of which should always be

recorded in the field notes.

The discharge of the stream is the sum of the discharges

through the several sub-areas, or

q
= a&i + a2v2 + a&s + etc.

and if this be divided by the total area a, the mean velocity for

the entire section is determined.

If di, d2 ,
d3 , etc., are the depths in feet on the several verticals

in Fig. 131a, and if Vi, %, v3 , etc., represent the mean velocities

in feet per second in these verticals, while i is the constant inter-
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val in feet between them, then the discharge in cubic feet per

second will be given by the formula

Q-^ldiVi+fa + d*) &+*)+ <!&] + etc.
o

For most cases, however, sufficient accuracy will be given by
the expression

+<"
?)]

and this is the method which has been adopted by the U. S.

Geological Survey. It permits of ready computation, while at

the same time it does not require absolute uniformity in the

interval /. Stevens * has compared the various methods and

formulas which have been used for the computation of the dis-

charge in such cases.

The following notes give the details of a gaging of the Lehigh

River, near Bethlehem, Pa., made at low water in 1885 by the use of

rod floats. The two sections were 100 feet apart, and each was divided

into 10 divisions of 30 feet width. In the second column are given the

soundings in feet taken at the upper section, in the third the mean of

the two areas in square feet, in the fourth the times of passage of tin

floats in seconds, in the fifth the velocities in feet per second, which

were obtained by dividing 100 feet by the times, and in the last are the

products a^i, a?v2 ,
which are the discharges for the subdivisions ab

02, etc. The total discharge is found to be 826 cubic feet per second,

Subdivisions Depths Areas Times Velocities Discharges

0.0

3.0
5S '5

L '<8 'S

3
r

201.7

4 217.5

5 210.0

6 186.0

7 150.8

8 114.0

9 84.0

10 42.0

380
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and the mean velocity is v = 826/1410 = 0.59 feet per second. A
second gaging of the stream, made a week later, when the water

level was 0.59 feet higher, gave for the discharge 1336 cubic feet per

second, for the total area 1630 square feet, and for the mean velocity

0.82 feet per second.

In the following tabulation are illustrated both the field notes

and the subsequent computations made to determine the dis-

charge of a stream from a current meter gaging.

Dis-

tance

from
Initial

Point
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After the discharge curve for a station has lu-m oiablislu-d. it

becomes possible, by keeping a record of the gage heights at the

station, to determine the total quantity of water which passes

the station in any given time. Observations on the gage height
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14

18

u
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precision. In any event the results derived from such gagings

are more reliable than can be obtained by the use of any formula

for the discharge of a stream.

Prob. 131. A stream 140 feet wide is divided into seven equal parts,

the six soundings being 1.9, 4.0, 4.8, 4.6, 2.7, and i.o feet. The seven veloci-

ties as found by a current meter are 0.7, 1.6, 2.4, 3.5, 3.0, 1.4, and 0.6 feet

per second. Compute the discharge.

ART. 132. APPROXIMATE GAGINGS

When the mean velocity v of a stream can be found, the dis-

charge is known from the relation q
=

av, the area a being meas-

ured as explained in the last article. An approximate value of

v may be ascertained by one or more float measurements by means

of relations between it and the observed velocity of the floats

which have been deduced by the discussion of observations. Such

measurements are usually less expensive than those explained

in Art. 131, and often give information which is sufficient for the

inquiry in hand.

The ratio of the mean velocity v to the maximum surface

velocity V has been found to usually lie between 0.7 and 0.85,

and about 0.8 appears to be a rough mean value. Accordingly,

v = o.SV

from which, if V be accurately determined, v can be computed
with an uncertainty usually less than 20 percent. Many at-

tempts have been made to deduce a more reliable relation be-

tween i) and V. The following rule derived from the investiga-

tions of Bazin makes the relation dependent on the coefficient c,

the value of which for the particular stream under consideration

is to be obtained from the evidence presented in the last chapter :

c

It is probable, however, that the relation depends more on the

hydraulic radius and the shape of the section than upon the degree
of roughness of the channel, which c mainly represents.

The influence of wind upon the surface velocities is so great
that these methods of determining v may not give good results
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except in calm weather. A wind blowing up-stream decreases

the surface velocities, and one blowing down-stream increases

them, without materially affecting the mean velocity and dis-

charge of the stream.

The ratio of the mean velocity v\ in any vertical to its surface

velocity V\ is less variable, for it lies between 0.79 and 0.98, or

ii
= 0.86 Vl

may be used with but an uncertainty of a few per cent. If sev-

eral velocities V\, F2 , etc., are determined by surface floats, the

mean velocities vi, 2*2, etc., for the several sub-areas a\, 02, etc.,

are known, and the discharge is q
= aw + a&t + etc., as before

explained.

By means of a sub-surface float, or by a current meter, the

velocity V at mid-depth in any vertical may be measured. The

mean velocity vi in that vertical is very closely

vi
=

0.98 V
In this manner the mean velocities in several verticals across

the stream may be determined by a single observation at each

point, and these may be used, as in Art. 131, in connection with

the corresponding areas to compute the discharge.

It was shown by the observations of Humphreys and Abbot

on the Mississippi that the velocity V is practically unaffected

by wind, the vertical velocity curves for different intensities of

wind intersecting each other at mid-depth. The mid-depth

velocity is therefore a reliable quantity to determine and use

in approximate gagings, particularly as the corresponding mean

velocity v\ for the vertical rarely varies more than i or 2 per cent

from the value 0.98 V.

Since the maximum surface velocity is greater than the mean

velocity v, and since the velocities at the shores are usually small, it

follows that there are in the surface two points at which the velocity

is equal to v. If by any means the location of either of these could be

discovered, a single velocity observation would directly give the value

of v. The position of these points is subject to so much variation

in channels of different forms, that no satisfactory method of locat-

ing them has yet been devised.
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In cases where it is desired to construct an approximate discharge

curve and where only a few discharge measurements have been made,
the method indicated by Stevens *

may be followed. From a cross-sec-

tion of the stream the values of a Vf in the Chezy formula q= ac ~\/rs

may be determined for each gage height and a curve plotted. The

discharge q then being known for several gage heights, it becomes pos-

sible to determine a value for c Vs. The value of this latter function

is nearly a constant, and the desired discharge curve can thus be ap-

proximated.

Other methods of making approximate gagings consist in adding
a solution of some chemical or salt to the water of the stream to be

measured at some point where thorough mixing will occur. If the

strength of the chemical solution and the rate of its application are

known, and if samples of the water of the stream are taken above

the point where the solution is introduced and down-stream after

thorough mixing has occurred, the discharge of the stream is then

equal to the number of times the chemical solution has been diluted by
the water of the stream multiplied by the rate of application of the

chemical. For example, if 2 quarts of a solution of common salt con-

taining 10 ooo parts per million of chlorine be added each second to

the stream and if a sample taken one-half a mile down-stream shows

the chlorine to be 20 parts per million then the dilution has been

10 000/20 or 500 and the discharge then is 500 X 2 quarts = 1000

quarts per second. No account has here been taken of the chlorine

naturally found in the water of the stream, and this must in all

cases be allowed for.. Stromeyerf has experimented in this manner

with solutions of common salt and sulphuric acid. On small streams

he found that the results agreed well with both the measurements of

a weir and a Venturi meter, thus leading him to conclude that results

correct within i percent can be obtained in this manner. It is doubt-

ful, however, if such accuracy could be had in large streams.

Benzenberg,| in gaging the flow in a portion of the sewer system
of Milwaukee where the sewer lay in a tunnel below the hydraulic

gradient, injected a quantity of red cosine into the water at one end

of the tunnel and observed its appearance at the other. He found

that the color in the water was never distributed over a length

*
Engineering News, July 18, 1907.

f Proceedings, Institution of Civil Engineers, vol. 160.

} Transactions American Society of Civil Engineers, December, 1893.
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greater than 7 to 9 feet, and thus tin- mean velocity was determined

with great accuracy. This experiment was of interest also in indi-

cating the relatively small extent to which the particles of water in a

n cross-section, such as that of a sewer, become separated from

each other, even during a one-half mile journey.

Prob. 132. A stream 60 feet wide is divided into three sections, having

the areas 32, 65, and 38 square feet, and the surface velocities near the middle

of these are found to be 1.3, 2.6, and 1.4 feet per second. What is the ap-

proximate mean velocity of the stream and its discharge ?

ART. 133. COMPARISON OF GAGING METHODS

This chapter, together with those preceding, furnishes many
methods by which the quantity of water flowing through an orifice,

pipe, or channel may be determined. A few remarks will now be

made by way of summary and comparison.

The method of direct measurement in a tank is always the

most accurate, but except for small quantities is expensive, and

for large quantities is impracticable. Next in reliability and con-

venience come the methods of gaging by orifices and weirs. An
orifice one foot square under a head of 25 feet will discharge about

24 cubic feet per second, which is as large a quantity as can

usually be profitably passed through a single opening. A weir

20 feet long with a depth of 2.0 feet will discharge about 200 cubic

feet per second, which may be taken as the maximum quantity

that can be conveniently thus gaged. The number of weirs may
be indeed multiplied for larger discharges, but this is usually

forbidden by the expense of construction. Hence, for larger

quantities of water indirect measurements must be adopted.

The formulas deduced for the flow in pipes and channels in

Chaps. 8 and 9 enable an approximate estimation of their dis-

charge to be determined when the coefficients and data which

they contain can be closely determined. The remarks in Art.

128 indicate the difficulty of ascertaining these data for streams,

and show that the value of the formulas lies in their use in cases

of investigation and design rather than for precise gagings. For

pipes an accurately rated water meter is a convenient method of
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measuring the discharge, while for conduits it will often be found

difficult to devise an accurate and economical plan for precise

determinations, unless the conditions are such that the discharge

may be made to pass over a weir or to be retained in a large

reservoir, the capacity of which is known for every tenth of a foot

in depth. For large aqueducts, and for canals and streams,

the usually available methods are those explained in this chapter.

In the case of the Catskill Aqueduct under construction in 1912

a number of Venturi meters of capacities up to 770 cubic feet

per second have been introduced (Art. 39).

Surface floats are not to be recommended except for rude

determinations, because they are affected by wind and because

the deduction of mean velocities from them is in many cases

subject to much uncertainty. Nevertheless many cases arise in

practice where the results found by the use of surface floats are

sufficiently precise to give valuable information concerning the

flow of streams. The double float for sub-surface velocity

is used in deep and rapid rivers, where a current meter can-

not be well operated on account of the difficulty of anchoring
a boat. In addition to its disadvantages already mentioned may
be noted that of expense, which becomes large when many ob-

servations are to be taken.

The method of determining the mean velocities in vertical

planes by rod floats is very convenient in canals and channels

which are not too deep or too shallow. The precision of a veloc-

ity determination by a rod float is always much greater than that

of one taken by the double float, so that the former is to be pre-

ferred when circumstances will allow. In cases where the velocity

is rapid, or where there are no bridges over the stream, rod floats

may often give results more reliable than can be obtained by
any other method.

Current-meter observations are those which now generally
take the highest rank for precision in streams where the condi-

tions are not abnormal. The first cost of the outfit is greater than

that required for rod floats, but if much work is to be done, it will

prove the cheaper. The main objection is the difficulty of use
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in cases of high velocities and to the errors which may be intro-

duced from the lack of proper rating ;
this is required to be done

at intervals, since it is found that the relation between the velocity

and the recorded number of revolutions may change during use.

In the execution of hydraulic operations which involve the meas-

urement of water a method is to be selected which will give the highest

degree of precision with given expenditure, or which will secure a

given degree of precision at a minimum expense. Any one can build

a road, or a water-supply system ;
but the art of engineering teaches

how to build it well, and at the least cost of construction and main-

tenance. Similarly the science of hydraulics teaches the laws of flow

and records the results of experiments, so that when the discharge of

a conduit is to be measured or a stream is to be gaged, the engineer

may select that method which will furnish the required information

in,
the most satisfactory manner and at the least expense.

Prob. 133. Consult Humphreys and Abbot's Physics and Hydraulics

of the Mississippi River (Washington, 1862 and 1876), and find two methods

of measuring the velocity of a current different from those described in the

preceding pages.

ART. 134. VARIATIONS IN DISCHARGE

When the stage of water rises and falls, a corresponding in-

crease or decrease occurs in the velocity and discharge. The

relation of these variations to the change in depth may be approx-

imately ascertained in the following manner, the slope of the

water surface being regarded as remaining uniform : Let the

stream be wide, so that its hydraulic radius is nearly equal to

the mean depth d\ then

v = c^/ds =

Differentiating this with respect to v and d gives

Sv/v
=

I Bd/d

Here the first member is the relative change in velocity when the

depth varies from d to d&d, and the equation hence shows that

the relative change in velocity is one-half the relative change in

depth. For example, a stream 3 feet deep, and with a mean

velocity of 4 feet per second, rises so that the depth is 3.3 feet;
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then <& = 4X^X0.3/3 =0.2, and the velocity of the stream be-

comes 4+0.2=4.2 feet per second.

In the same manner the variation in discharge maybe found.

Let b be the breadth of the stream, then

and by differentiating with respect to q and d,

Bq/q
=

I Bd/d

Hence the relative change in discharge is ij times that of the

relative change in depth. This rule, like the preceding, supposes

that Bb is very small, and will not apply to large variations in

the depth of the water.

The above conclusions may be expressed as follows : If the

mean depth changes i percent, the velocity changes 0.5 percent,

and the discharge changes 1.5 percent. They are only true

for streams with such cross-sections that the hydraulic radius

may be regarded as proportional to the depth, and even for

such sections are only exact for small variations in d and v.

They also assume that the slope s remains the same after

the rise or fall as before
;

this will be the case if a condition of

permanency is established, but, as a rule, while the stage of

water is rising the slope is increasing, and while falling the slope

is decreasing.

Gages for reading the stages of water are now set up on many
rivers, and daily observations are taken. Such a gage is usually

a vertical board graduated to feet and tenths and set if possible

with its zero below the lowest known water level. Another form

is the box-and-chain gage, which consists of a box fastened on a

bridge with a graduated scale within it and a chain that can be

let down to the water level
;
the length of the chain being known,

the gage height can then be read from the scale if its zero is set

so that the reading will be zero when the end of the chain just

touches the water surface when it is at zero height. Such ob-

servations of the daily stage of a river are of great value in plan-

ning engineering constructions, and they are now made at many
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stations by the United States government through the Depart-

ment of Agriculture and the Geological Survey Bureau.

When several measurements of the discharge of a stream have

been made for different stages of water, a curve may be drawn

to show the law of variation of discharge (Art. 131), and from

this curve the discharge corresponding to any given stage of water

may be approximately ascertained. Fig. 1316 shows a typical

discharge curve. Fig. 134 shows the actual discharge curve for

the Lehigh River at Bethlehem, Pa., the ordinates being the

5000 10000 15000

Fig. 134.

JJUUOO

heights of the water level as read on the gage, and the abscissas

being the discharges of the river in cubic feet per second
; this is

only a part of the discharge curve for that river, as the water has

been known to rise to 22.5 feet and the corresponding discharge

was over 100 ooo cubic feet per secbnd. Each station on a river

has its own distinctive discharge curve, for the local topography

determines the heights to which the water level will rise.

Prob. 134. A stream of 4 feet mean depth delivers 800 cubic feet per sec-

ond. What will be the discharge when the depth is decreased to 3.87 feet ?

If the stream is 100 feet wide, what will be the velocity when the depth is

4.12 feet?

ART. 135. TRANSPORTING CAPACITY OF CURRENTS

The fact that the water of rapid streams transports large

quantities of earthy matter, either in suspension or by rolling it

along the bed of the channel, is well known, and has already been

mentioned in Art. 120. It is now to be shown that tin- diameters

of bodies which can be moved by the pressure of a current vary

as the square of its velocity, and that their weights vary as the

sixth power of the velocity.
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When water causes sand or pebbles to roll along the bed of a

channel, it must exert a force approximately proportional to the

square of the velocity and to the area exposed (Art. 27), or if d

is the diameter of the body and C a constant, the force which is

required to move it horizontally is

But if motion just occurs, this force is also proportional to the

weight of the body, because the frictional resistance of one body

upon another varies as the normal pressure or weight. And as

the weight of a sphere varies as the cube of the diameter, it follows

that
d? = CdW or

.
d = Cv2

Now since d varies as v
2

,
the weight of the body, which is propor-

tional to J3
,
must vary as v

6
;
which proves the proposition enun-

ciated above. Hence an increase in velocity causes far greater

increase in transporting capacity.

Since the weight of sand and stones when immersed in water

is only about one-half their weight in air, the frictional resistances

to their motion are slight, and this helps to explain the circum-

stance that they are so easily transported by currents of moderate

velocity. It is found by observation that a pebble about one

inch in diameter is rolled along the bed of a channel when the

velocity is about 3^ feet per second
; hence, according to the above

theoretical deduction, a velocity five times as great, or 17^ feet

per second, will carry along stones of 25 inches diameter. This

law of the transporting capacity of flowing water is only an ap-

proximate one, for the recorded experiments seem to indicate

that the diameters of moving pebbles on the bed of a channel do

not vary quite as rapidly as the square of the velocity. The law,

moreover, is applicable only to bodies of similar shape, and

cannot be used for comparing round pebbles with flat spalls.

The following table gives the velocities on the bed or bottom of

the channel which are required to move the materials stated.

The corresponding mean velocities in the last column are derived

from the empirical formula deduced by Darcy,

v = r
o' + 1 1
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in which v' is the bottom and v the mean velocity. The bottom

or transporting, velocities were deduced by Dubuat from experi-

ments in small troughs, and hence are probably slightly less than

tin- velocities which would move the same materials in channels

of natural earth.
Bottom Mean

V velocity velocity

Clay, fit for pottery, 0.3 0.4

Sand, size of anise-seed, 0.4 0.5

Gravel, size of peas, 0.6 0.8

Gravel, size of beans, 1.2 1.6

Shingle, about i inch in diameter, 2.5 3.5

Angular stones, about i
.} inches, 3.5 4.5

The general conclusion to be derived from these figures is that

ordinary small, loose earthy materials will be transported or rolled

along the bed of a channel by velocities of 2 or 3 feet per second.

It is not necessarily to be inferred that this movement of the

materials is of an injurious nature in streams with a fixed regimen,

but in artificial canals the subject is one that demands close at-

tention. The velocity of the moving objects after starting has

been found to be usually less than half that of the current.*

In a silt-bearing stream there is a certain critical velocity F at

which all silt already in suspension is carried on without being de-

posited and at which no further silt is scoured from the sides and

bottom. This velocity, according to the investigation of Kennedy,!
is given by VQ = md M where d is the depth of the stream and ;;/ is

0.82 for light sandy silt, 0.99 for sandy loam, and 1.07 for coarse silt.

Kennedy also found that the amounts of silt carried in the same

stream varied with the square root of the fifth power of the veloci-

ties, so that if x and XQ are amounts carried at velocities V and F
then x = XQ (F/Fo)*. When V is greater than F

,
then x - x is the

amount of scour due to the change of velocity; when V is less

than Fo, then XQ x is the amount of deposit due to the change of

velocity.

Prob. 135. In the early history of the earth the moon was half its

present distance from the earth's center, and the tides were about eight times

*
Herschel, on the erosive and abrading power of water, in Journal

Franklin Institute, 1878, vol. 75, p. 330.

t Proceedings, Institution of Civil Engineers, vol. 119, 1894-95, p. 281.
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as high as at present. It is supposed that these tides rolled over the low

lands and moved great rocks from place to place. The greatest velocity

of such a wave is -\/gd, where d is the depth of the water. What is the prob-
able weight and size of the largest rock that such a current would move ?

ART. 136. INFLUENCE OF DAMS AND PIERS

When a dam is built across a stream, it is often desired to

compute its height so that the water level may stand at a given
elevation. Thus in the figures, CC represents the surface of the

stream before the construction of the dam, the depth of the water

being D, and it is required to find the height G of the dam so that

Y///////////////////W

Fig. 136a. Fig. 1366.

the water surface may be raised the vertical distance d. There

are two cases, the first where the crest is above the original water

level CC, and the second where it is below that level; in both

cases the discharge q must be known in order to compute the height
of the dam.

When the crest is not submerged, as in Fig. 1360, it is seen that

the value of G is D + d H, where H is the head on the crest.

Now from Art. 64 the value of q is M&(# + if/O^, where b is the

length of the crest and h is the head due to velocity of approach.
Hence there results

G = D+d+ i\h-(q/ub)* (136)i

in which M is to be taken from Art. 69. For example, let the

discharge be 18 ooo cubic feet per second, let the width of the

stream above the dam be 600 feet, and the width on the crest

be 525 feet; also let D and d be 8.5 and 6.0 feet, and let M be

3.33. The mean velocity of approach is

18000 ,.

v = - = 2.1 feet per second
600 X 14.5

whence the velocity-head is h = 0.0155 X 2.i
2 =

0.07 feet.

Then from the formula there results G =
9.9 feet, which is the



Influence of Dams and Pins. Art. 136 343

required height of the dam. In many cases it will be unnecessary

to consider velocity of approach, and // may be omitted from the

formula
;

if this be done for the example in hand, the value of G
is 9.8 feet.

When it is desired to raise the water level only a short distance,

the crest of the aam will be submerged. For this case Fig. 1366

gives H = D -h d G and H' = D G. By inserting these

heads in formula (67)2 and neglecting velocity of approach, there

is found

G = D+ Id
-
Iq/ubVJ (136),

Here the coefficient M lies between 3.09 and 3.37, depending on the

value of the ratio H'/H, and as a mean 3.1 may be used. For ex-

ample, let q = 400 cubic feet per second, Z) = 4, d =
i, 6 = 50

feet; then G is found to be 2.95 feet. The value of H is then

2.05 feet and that of H' is 1.05, whence H'/H is 0.5 closely, and

from Art. 67 the value of M is 3.11, which indicates that the as-

sumed value is close enough. Accordingly 3.0 feet may be taken

as the height of the submerged dam.

When bridge piers are built in a stream, its cross-section is

diminished and the water level up-stream from the piers stands

at a greater height than be-

fore. The most common

problem is to find how high

the water will rise when the

original width B is to be con-

tracted to the .width b. Let

D (Fig. 13&) be the mean

depth of the water before the

building of the piers, H the

rise in the water level, and q the discharge of the stream. Then

the discharge q may be regarded as consisting of two parts, first

that passing over a weir of breadth B under the head H, and

second that passing through the submerged orifice of breadth b

and height D under the head H. Hence, from Arts. 64 and 51 ,

q (136),
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in which h is the head due to the velocity of approach. The

coefficient of discharge c for weirs and orifices is about 0.6, but

here it is much larger, since there is no crest. From experiments

by Weisbach on a small round pier, c appears to be over 0.9, and

from other discussions it appears in some cases to be a little lower

than 0.8. Its value in any event depends upon the shape of the

piers and their cutwaters, and probably the best that can now

be done is to take it as 0.9 for piers with round ends and at 0.8

for piers with triangular cutwaters.

As an example of the determination of c, take the case of a

flood in the Gungal River,* where B =
650, b = 578, and D = 35

feet and q 477 800 cubic feet per second, and where it was ob-

served that the height H was 3.6 feet. The mean velocity above

the piers was v = 477 800/38.6 X 650 =
19.0 feet per second,

whence the velocity-head h =
5.61 feet. Inserting all these data

in the formula and solving for c, there is found c =
0.79. This

is an unusual case where the velocity was very high, and the piers

had sharp cutwaters.

As an example of the determination of the height H, take the

case of a bridge over the Weser,f where B =
593, b =

315, D =

16.4 feet, and q
= 46 550 cubic feet per second. As nothing is

known about, the shape of the piers, c may be taken as 0.8
;
then

formula (136) 3 reduces to

(H+ h)*+ 13.1 (# + )'
=

18.3

from which H + h is found by trial to be 1.55 feet. Now, as-

suming H as 1.2 feet, the mean velocity above the piers is found

to be 4.3 feet per second, whence h is 0.29 feet. Accordingly
H =

1.55 0.29 = 1.26 feet, and with this value the velocity

above the pier is found to be 4.44 feet per second, whence a better

value of h is 0.31 feet. This gives H = 1.24 feet, which may be

regarded as the final result for the height of the backwater.

Prob. 136. A river 940 feet wide has a mean depth of 4. i feet and a mean

velocity of 3.3 feet per second. Ten piers, each 12 feet wide, are to be built

*
Proceedings, Institution of Civil Engineers, 1868, vol. 27, p. 222.

t D '

Aubuisson 's Treatise on Hydraulics, Bennett's translation (New
York, 1857), p. 189.
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across it. Compute the probable rise of backwater caused by the piers.

( 'ompute also the probable rise during a flood which increases the mean depth

to 18.5 feet and the nu an velocity to 5.8 feet per second.

ART. 137. STEADY NON-UNIFORM FLOW^
In Arts. 112-133 the slope of the channel, its cross-section,

and its hydraulic radius have been regarded as constant. If

these are variable in different reaches of the stream, the case is

one of non-uniformity, and this will now be discussed. The flow

is still regarded as steady, so that the same quantity of water

passes each section per second, but its velocity and depth vary

as the slope and cross-section change. Let there be several

reaches /i, k, /n ,
which have the falls fa, fa, hn ,

the water

sections being ai, 02, tfn, the hydraulic radii r\, r2 ,
rnj and

the velocities vi, %, vn . The total fall hi + fa + -f hn

is expressed by h. Now the head corresponding to the mean

velocity in the first section is Vi
2
/2g. The theoretic effective head

for the last section is h +- v\
2
/2g, while the actual velocity-head

is vn
2
/2g. The difference of these is the head lost in friction;

or by (125),

2g 2g CiVi C2
2
r2 cnVrt

in which Q2
,
C2

2
,

cn
2 are the Chezy coefficients for the dif-

ferent lengths. Now let q be the discharge per second; then,

since the flow is steady, the mean velocities are

0i
=

q/ai v2 = q/(h
- vn

= q/an

and, inserting these in the equation, it reduces to

2g

which is a fundamental formula for the discussion of steady flow

through non-uniform channels. This formula shows that the dis-

charge q is a consequence not only of the total fall h in the

entire length of the channel, but also of the dimensions of the

various cross-sections. The assumption has been made that a

and r are constant in each of the parts considered
;

this can be
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realized by taking the lengths /i, /2 ,
ln sufficiently short. If

only one part be considered in which a and r are constant, an and

#1 are equal, all the terms but one in the second member disappear,

and the last equation reduces to q
= ca Vr/?//,which is the Chezy

formula for the discharge in a channel of uniform cross-section.

An important practical problem is that where the steady flow

is non-uniform in a channel having a bed with constant slope, a

condition which may be caused by an obstruction below the part

considered or by a sudden fall below it. Let a\ and a2 be the

areas of the two sections, / their distances apart, and vi and z>2

the mean velocities. Then, if a and r be average values of the

areas and hydraulic radii of the cross-sections throughout the

length I, the last formula becomes

2g\d2
2 a 2

Now the important problem is to discuss the change in depth

between the two sections. For this purpose let AiA 2 in Fig. 137

be the longitudinal profile of the

water surface, let AiD be hori-

zontal, and AiC be drawn parallel

to the bed BiB2 . The depths

AiBi and A 2B2 are represented

Fi 137 by di and d2 ,
the latter being

taken as the larger. Let i be the

constant slope of the bed BiB2 ',

then DC U, and since DA 2
= h

and A 2C = d% di, there is found for the fall in the length /,

Inserting this value of h in the preceding equation and solving

for /, there is obtained the important formula

/ = i

2
di

2
) (137)1

from which the length / corresponding to a change in depth d2 di

can be approximately computed. This formula is the more

accurate the shorter the length /, since then the mean quantities
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a and r can be obtained with greater precision, and c is subjrrt

to less variation.

The inverse problem, to find the change in depth when / is

given, cannot be directly solved by this formula, because the areas

are functions othe depths. When d* - di is small compared with

either d\ or </2 ,
it is allowable to regard d? as equal to d\ when they

are to be added or multiplied together. Hence

also making a equal to #1 and r equal to Ji in the last formula,

and solving for d^ di, there is found

i

from which the change in depth can be computed when all the

other quantities are given.

Fig. 137 is drawn for the case of depth increasing down-

stream, but the reasoning is general and the formulas apply

equally well when the depth decreases with the fall of the stream.

In the latter case the point A 2 is below C, and d^ d\ will be

negative. As an example, let it be required to determine the

decrease in depth in a rectangular conduit 5 feet wide and 333 feet

long, which is laid with its bottom level, the depth of water at

the entrance being maintained at 2 feet, and the quantity sup-

plied being 20 cubic feet per second. Here / = 333, b =
5, d\ 2,

q
=

20, and i = o. Taking c =
89, and substituting all values

in the formula, there is found d% d\ = 0.09 feet
;
whence dz =

1.91 feet, which is to be regarded as an approximate probable

value. It is likely that values of d2 d\ computed in this

manner are liable to an uncertainty of 15 or 20 percent, the longer

the distance / the greater being the error of the formula. In

strictness also c varies with depth, but errors from this cause

are small when compared to those arising in ascertaining its

value from the tables.

Prob. 137. Explain why formula (137)s cannot be used for the above

example when the slope i is o.oi.
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ART. 138. THE SURFACE CURVE

In the case of steady uniform flow, in the channel where the

bed has a constant grade, the slope of the water surface is paral-

lel to that of the bed, and the longitudinal profile of the water

surface is a straight line. In steady non-uniform flow, however,

the slope of the water surface continually varies, and the longi-

tudinal profile is a curve whose nature is now to be investigated.

As in the last article, the width of the channel will be taken as

constant, its cross-section will be regarded as rectangular, and

it will be assumed that the stream is wide compared to its depth,

so that the wetted perimeter may be taken as equal to the width

and the hydraulic radius equal to the mean depth (Art. 112).

These assumptions are closely fulfilled in many canals and rivers.

The last formula of the preceding article is rigidly exact if

the sections di and a^ are consecutive, so that / becomes 81 and

dz d\ becomes Sd. Making these changes,

in which d is the depth of the water at the place considered. This

is the general differential equation of the surface curve, / being

measured parallel to the bed BB, and d upward, while the angle

whose tangent is the derivative Bd/Bl is also measured from BB.

To discuss this curve, let CC be the water surface if the slope

were uniform, and let D be the depth of the water in the wide

Fig. 138a.

rectangular channel. The slope s of the water surface is here

equal to the slope i of the bed of the channel, and from the Chezy
formula (113),

q
= av = cbD ~Vri = cbD ^/Di
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This value of q, inserted in the differential equation of the sur

face curve, reduces it to the form,

Bd i

g

in which d and / are the only variables, the former being the ordi-

nate and the latter the abscissa, measured parallel to the bed BB,
of any point of the surface curve. The derivative Bd/Bl is the

tangent of the angle which the tangent at any point of the sur-

face curve makes with the bed BB or the surface CC.

First, suppose that D is less than d, as in Fig. 1380, where

AA is the surface curve under the non-uniform flow, and CC is

the line which the surface would take in case of uniform flow.

The numerator of (188)2 is then positive, and the denominator

is also positive, since i is very small. Hence Bd is positive, and

it increases with d in the direction of the flow
; going up-stream

it decreases with J, and the surface curve becomes tangent to CC
when d = D. This form of curve is that usually produced above

a dam
;

it is called the
" backwater curve," and will be discussed

in detail in Art. 140.

Second, let d be less than D, as in Fig. 1386. The numerator

is then negative and the denominator positive ;
Bd is accordingly

negative and AA is concave to the bed BB, whereas in the former

case it was convex. This form of surface curve is produced when

a sudden fall occurs in the stream below the point considered
;

it is called the "drop-down curve" and is discussed in Art. 141.

Formula (138)i may also be put into another form by substi-

tuting for q its value bdv, where v is the mean velocity in the cross-

section whose depth is d. It thus becomes

and by its discussion the same conclusions are derived as before.

When v is equal to cVjj, the inclination Bd/Bl becomes zero, and

the slope of the water surface is parallel to the bed of the stream.

When v is less than c Vd7, the numerator is negative, and if the
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denominator is also negative, the case of Fig. 1380 results. When
v is greater than c \di and the denominator is negative, the case of

Fig. 138& obtains. When v equals Vga*, the value of Bd/Bl is

infinity and the water surface stands normal to the bed of the

stream
;

this remarkable case can actually occur in two ways,

and they will be discussed in Art. 139.

Prob. 138. Let the velocity of the stream be 20 feet per second, the

value of c be 80, and the slope be i on 2000. Compute values of Bd/Bl

for depth of 12.2, 12.3, 12.4, 12.5, and 12.6 feet
;
then draw the surface curve.

ART. 139. THE JUMP AND THE BORE

A very curious phenomenon which sometimes occurs in shallow

channels is that of the so-called "jump," as shown in Fig. 1390.

This happens when the denomi-

nator in (138) 3 is zero
;
then Sd/Sl

Vr
is infinite, and the water surface

stands normal to the bed. Plac-

Fi 139a ing that denominator equal to

zero, there is found v
2 =

gd. Now
by further consideration it will appear that the varying denomi-

nator in passing through zero changes its sign. Above the jump
where the depth is d\ the velocity is slightly greater than Vgdi,
and below it is less than VgoV The conditions for the occurrence

of the jump are that an obstruction should be in the stream below,

that the slope i should not be small, and that the velocity vi

should be greater than VgoV To find the necessary slope, the

algebraic conditions are

Vi
= c Vo\7 and v\ > ^fgd\ whence i > g/c

2

and accordingly the jump cannot occur when i is less than g/c
2

.

For an unplaned planked trough c may be taken at about 100
;

hence the slope for this must be equal to or greater than 0.0x5322.

To determine the height of the jump, let dz d\ be represented

by j. It is then to be observed that the lost velocity-head is

(vi
2

v%
2
)/2g, and that this is lost in two ways, first by the

impact due to the expansion of section (Art. 76), and second by
the uplifting of the whole quantity of water through the height
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i(</2
-

di), loss in friction between d\ and d* being neglected.

Hence .*_.*

Inserting in t<his the value of %, found from the relation

vi(d\ + j)
=

vidi, and solving for j, gives

(139)

The following is a comparison of heights of the jump computed

by this formula and the observed values in four experiments made

by Bidone, the depths being in feet :

Depth <fj Velocity c, Observed j Computed j

0.149 4-59 0.274 0.290

0.154 4.47 0.267 0.283

0.208 5.59 0.305 0.428

0.246 6.28 0.493 0.531

The agreement is very fair, the computed values being all slightly

greater than the observed, which should be the case, because the

reasoning omits the frictional resistances between the points

where d\ and dz are measured. Experiments made at Lehigh

University, under velocities ranging from 2.2 to 6.2 feet per

second, show also a good agreement between computed and ob-

served value.* The depths in these experiments were less than

in those of Bidone, but higher relative jumps were obtained.

For instance, for Vi =
4.33 feet per second and d\ = 0.039 ^eet

>

the observed value of j was 0.166 feet, whereas the value com-

puted from the above formula is o. 1 73 feet
;

here the jump is

more than four times the depth d\, while it is usually less than

twice di in the above records from Bidone.

Another remarkable phenomenon is that of the so-called

"bore," where a tidal wave moves up a river with a vertical front.

It is also seen when a large body of water moves down a canon

after a heavy rainfall, or when a reservoir bursts and allows a

large discharge to suddenly, escape down a narrow valley. In the

great flood of 1889 at Johnstown, Pa., such a vertical wall of water,

*
Engineering News, 1895, vol. 34, p. 28.
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variously estimated at from 10 to 30 feet in height, was seen to

move down the valley, carrying on its front brush and logs mingled
with spray and foam.* In 41 minutes it traveled a distance of

13 miles down the descent of 380 feet.

The velocity was hence about 28 feet

per second.
W^^^

Fig 13Qb Fig. 139ft shows the form of surface

curve for this case, and by reference to

(138) 3 it is seen that Bd/Bl must be negative and that it has

the value oo at the vertical front. The conditions for the occur-

rence of the bore then are

v = vgd and v > c vdi whence i < g/c
2

For the Johnstown flood, taking v as 28 feet per second, the value

of d found from this equation is 24 feet
;

it was probably greater

than this in the upper part of the valley and less in the lower

part. Since the value of i is about 1/180, it follows that c must

have been less than 76. The conditions here established show

that the flood bore will occur when the velocity becomes equal

to Vgd, provided c is less than vg/i. It appears, therefore, that

roughness of surface is an essential condition for the formation

of the bore in a steep valley.

The bore can also occur in a canal with horizontal bed when a lock

breaks above an empty level reach, provided v becomes equal to 'Vgd.

No case of this kind appears to be on record, and there seems to be no

way of ascertaining whether the actual velocity will reach the limit

"Vgd. If the bore occurs and the depth of the vertical wall be d^, its

distance from a point where the depth is d is found from (139)2 by

inserting in it the value of g corresponding to the critical velocity v.

Thus may be shown that for c = 80 and d1 =^dl the length / is 275^.

The tidal bore, which occurs in many large rivers when the tide

flows in at their mouths, obeys similar laws. Here the slope i may be

taken as zero, while c is probably very large, so that roughness of sur-

face is not an essential condition. The great bore at Hangchow,

China/which occurs twice a year, is said to travel up the river at a rate

of from 10 to 13 miles per hour, the height of the vertical front being

Transactions American Society of Civil Engineers, 1889, vol. 21, p. 564..
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from 10 to 20 feet.* From v = Vg/r, the velocity corresponding

depth of 10 feet is 12.6 miles per hour, while that corresponding to a

depth of 20 feet is 17 miles per hour, so that the statements have a fair

agreement with the theoretical law. This investigation indicates that

the velocity of th^ tidal bore depends mainly upon the depth of the

tidal wave above the river surface, but it may be noted that other

discussionsf regard the depth of the river itself as an element of impor-

tance, andf Art. 191 considers this with respect to common waves.

Prob. 139. When the height of the jump is three times the depth d\,

show that the velocity v\ must be 2T/2gd\. Also show that 0.4141/1 is the

minimum height of a jump.

ART. 140. THE BACKWATER CURVE

When a dam is built across a channel the water surface is

raised for a long distance up-stream. This is a fruitful source

of contention, and accordingly many attempts have been made
to discuss it theoretically, in order to be able to compute the

probable increase in depth at various distances back from a pro-

posed dam. None of these can be said to have been successful

except for the simple case where the slope of the bed of the channel

is constant and its cross-section such that the width may be re-

garded as uniform and the hydraulic radius be taken as equal to

the depth. These conditions are closely fulfilled for some streams,

and an approximate solution may be made by the formula (137)2 .

It is desirable, however, to obtain an exact equation of the sur-

face curve.

For this purpose take the differential equation of the surface curve

given in (138)2, and let the independent variable d/D be represented

by x. Then it may be put into the more convenient form

JU2( T +!=<*/) (140),
&x t\ x3 i )

in which / is the abscissa and Dx the ordinate of any point of the curve.

The general integral of this is

I = "S.-
D(\--}(

-

6
log.V^t,

'
--*= arc cot

* Skidmore's China, the Long-lived Empire (New York), 1900, p. 294.

t G. H. Darwin, The Tides, p. 65 ; Century Magazine, vol. 34, p. 903.
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which is the equation of the surface curve, C being the constant of

integration. To use this let the logarithmic and circular function

in the second parenthesis of the second member be designated by

<t>(x) or $(d/D), namely,

Then the above value of / may be written

Now let <4 be the depth at the dam and let / be measured up-stream

from that point to a section where the depth is d^ Then, taking the

integral between these limits the constant C disappears, and

(140) 2

which is the practical formula for use. In like manner </2 may repre-

sent a depth at any given section and di any depth at the distance /

up the stream.

When d = D, the depth of

the backwater becomes equal to

that of the previous uniform

flow, x is unity, and hence I is
-Tig. 14tnZ.

infinity. The slope CC of uni-

form flow is therefore an asymptote to the backwater curve. Accord-

ingly the depth d1 is always greater than D, although practically

the difference may be very small for a long distance /.

In the investigation of backwater problems by the above formula

there are two cases : first, d2 and di may be given and / is to be found
;

and second, / and one of the depths are given and the other depth is

to be found. To solve these problems the values of the backwater

function 4>(d/D) computed by Bresse are given in Table 140.* The

argument of the table is D/d, which, being always less than unity,
is more convenient for tabular purposes than d/D, since the values of

the latter range from i to oo . By the help of Table 140 practical

problems may be discussed and the following examples will illustrate

the method of procedure.

* Bresse 's Mecanique applique's (Paris, 1868), vol. 2, p. 556.
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TABLE 140. VALUES OF THE BACKWATER FUNCTION

D
d
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A stream of 5 feet depth is to be dammed so that the water shall

be 10 feet deep a short distance up-stream from the dam. The uni-

form slope of its bed and surface is 0.000189, or a ntt^e IGSS tnan one

foot per mile, and its channel is such that the coefficient c is 65. It

is required to find at what distance up-stream the depth of water is

6 feet. Here D =
5, d2

=
10, di = 6 feet, i/i = 5291, and c2

/g =

131.* Now D/d2
=

0.5, for which the table gives <f>(d2/D) =
0.1318,

and D/dl
=

0-833, f r which the table gives ^(d^/D) = 0.4792.

These values inserted in (140) 2 give

/ = 5291(10
-

6) + 5(5291
-

131X0.4792
-

0.1318)

from which / = 30 125 feet = 5.70 miles. In this case the water is

raised one foot at a distance 5.7 miles up-stream from the dam.

The inverse problem, to compute d2 or dlf when one of these and

/ are given, can only be solved by repeated trials by the help of Table

140. For example, let / = 30 125 feet, the other data as above, and

let it be required to determine d2 so that d1 shall be only 5.2 feet, or 0.2

greater than the original depth of 5 feet. Here D/d l
=

0.962, for

which the table gives <(rf,/J9)
=

0.9709. Then (140)2 becomes

30125 = 5291(^2- 5.2)+ 25 800 [0.9709- <j>(d2/D)]

which is easily reduced to the simpler form

32 590 = 5291 4z 25 800 <j>(d2/D)

Values of d are now to be assumed until one is found that satisfies

this equation. Let d2
= 8 feet, then (D/d2) 0.625 and, from the

table, <f>(d2/D) = 0.2180; substituting these, the second member be-

comes 36 700, which shows that the assumed value is too large. Again,

take di = 7 feet, then D/dz
=

0.714, for which 4>(dz/D) = 0.3047,

whence the second member is 29 200, showing that 7 feet is too small.

If d2
=

7.4 feet, then D/d2
=

0.675 and <t>(d2/D) =
0.2629, and with

these values the equation is nearly satisfied, but 7.4 is still too small.

On trying 7.5 it is found to be too large. The value of d2 hence lies

between 7.4 and 7.5 feet, which is as close a solution as will generally

be required. The height of dam required to maintain this depth may
now be computed from Art. 136.

If the slope, width, or depth of the stream changes materially,

the above method, in which the distance / is measured from the dam
as an origin, cannot be used. In such cases the stream should be di-
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vided into reaches, for each of which the slope, width, and depth .m

IK- regarded as constant. The formula can then be used for the lir-t

rrach and the depth of its upper section be determined
;
then the ap-

plication can be made to the next reach, and so on in order. For com-

mon rivers and fQ shallow canals it will probably be a good plan to

determine D by actual measurement of the area and wetted perimeh -r

of the cross-section, the hydraulic radius computed from these being

taken as the value of D. Strictly speaking, the coefficient c varies with

the slope and with D
y
and its values may be found by Kutter's for-

mula, if it be thought worth the while. Even if this be done, the results

of the computations must be regarded as liable to considerable un-

certainty. In computing depths for given lengths an uncertainty of

10 percent or more in the value of d2 d\ should be expected.

The following method of computation is readily applicable to

cases of backwater and gives results which are often sufficiently

satisfactory. The distance / between two sections does not ap-

pear in the formulas, but it is essential that this distance shall

be small enough so that the water surface between them may be

regarded as a straight line. In some streams the distance apart

of sections may be as high as 1000 feet, in others smaller. Let

Fig. 140ft represent the

case of a stream where

an obstruction, which

is some distance down-

stream from the sta-

tion M , causes a rise of

the original surface.

At the several stations

M, N,P,Q, R, etc., elevations of the original surface alx\e

a datum plane are taken. A cross-section of the stream is also

made at each station, the levels being extended upward on tin-

banks so that for any water level the area a and the wetted

perimeter p may be ascertained from a drawing. At the first

station M the elevation of the backwater is known, it being

either assumed or computed from Art. 136. The problem

then is to determine the elevation of the backwater at each of

the stations up-stream from M.
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Fig. 14Qc shows on a larger scale the profile between M and

N and also the two cross-sections at M which are drawn from

the given data. In this diagram the elevations of MI, M2 ,
and NI

are known, and it is required to find that of N2 . Let a\ and a2

Fig. 140c.

denote the areas of the cross-section at M, the first for the original

flow and the second for the backwater, and let pi and p2 be the

corresponding wetted perimeters. Let h\ be the known difference

of the elevations of MI and NI, and h the unknown difference

of the elevations of M2 and N2 . Then the formula

(140),

determines h2 ,
and accordingly the elevation of N2 is known. This

formula expresses the condition that the same quantity of water

flows through the cross-sections a\ and #2, and it is^ deduced as

follows. The mean discharges in these two sections are, from the

Chezy formula, CifliVrisi and C2 fl2 V/-2s2 . Equating these, re-

placing 7-1 and r2 by a\/p\ and 02/^2, squaring, and making the

coefficients Ci and C2 equal, gives the equation s\a?/p\ = S2a^/p2 .

Now Si = h\l and s2 = h2l where / is the distance between the two

sections. Hence hia-f/pi
= h2a2

3
/p2 ,

from which the above for-

mula (140) 3 at once results.

As an example, take the case of four stations on Coal River,

W.Va., data for the original water surface being as follows :

Station = M N P Q R
Elevation = 10.05 "-S3 "-95 13-44 14-39 ft -

Rise h\ = 1.48 0.42 1.49 0.95 ft.

Area a\ = 3034 3012 3210 2749 2340 sq. ft.

Perimeter p\ = 255 260 280 204 192 ft.
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and let it be required to find the elevations of the backwater sur-

face when an obstruction down-stream from M raises the water

to elevation 12.05 at ^a- Drawing the water level in the cross-

section at M, thece are found a* = 3533 square feet and fa
= 260

feet. Then ^m/iSvoAn
fc-,.483224j

*o
f

3533
3 X255

and hence the elevation at Nz is 12.05 + -95
=

13.00 feet. For

this water-level the cross-section for station N gives 3390 square

feet area and 264 feet wetted perimeter for the backwater condi-

tion. Then the backwater rise at station P is

X 280 e= 0.42
s1- - = 0.30 feet,
339o

3 X264
which gives 13.30 feet for the elevation of the backwater surface

at P. The results for the five stations are arranged as follows,

the last line showing the required elevations of the backwater

surface :

Station - M N P Q R
Area a2 = 3533 339 35&> 2940 2492 sq. ft.

Perimeter p* = 260 264 286 209 197 ft.

Rise hi 0.95 0.30 i.io 0.80 ft.

Elevation = 12.05 13-00 13.30 14.40 15.20 ft.

While there are several assumptions and limitations in this

method, it does not appear that they introduce more error than

that which obtains when the formula (140) 2 is applied to a stream

of irregular section. By the exercise of much judgment in select-

ing the stations, and by taking the data for a cross-section as

the mean of several on both sides of a station, it is believed that

the method can be used with much confidence in all cases where

extreme conditions do not obtain. If the Chezy coefficients at a

station can be found, then the formula (140) 3 may be written in

the more exact form

fc = Ai Ci

Prob. 140. A stream, having a cross-section of 2400 square feet and

a wetted perimeter of 300 feet, has a uniform slope of 2.07 feet per mile, and

its channel is such that c =
70. It is proposed to build a dam to raise the

water 6 feet above the former level, without increasing the width. Compute
the rise of the backwater at a distance of one mile up-stream.
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ART 141. THE DROP-DOWN SURFACE CURVE

When a sudden fall occurs in a stream, the water surface for a long

distance above it is concave to the bed, as seen in Fig. 1386 or in Fig.

141. This case also occurs when

the entire discharge of a canal is

allowed to flow out through a fore-

bay F to supply a water-power

plant. Let D be the original uni-

form depth of water having its

surface parallel to the bed, the
Fig 141

slope of both being i. Let di and

d^ be two of the depths after the steady non-uniform flow has been

established by letting water out at F, and let d^ be greater than dz, the

distance between them being /. The investigation of the last article

applies in all respects to this form of surface curve, and

j d\ dz i

i

is the equation for practical use, in which c is the coefficient in the

Chezy formula v = cVr^, and g is the acceleration of gravity. Table

140 cannot, however, be used for this case because d/D in that table

is greater than unity, while here it is less than unity.

The function $(d/D) with values of d/D less than unity is here

called the "drop-down function," in order to distinguish it from the

backwater function of the last article, although the algebraic expression

for the two functions is the same. Table 141, due also to Bresse,

gives values of this drop-down function for values of the argument

d/D, ranging from o to i
,
and by its use approximate solutions of prac-

tical problems can be made. For example, take a canal 10 feet deep,

having a coefficient c equal to 80, and let the slope of its bed be 1/5000
and its surface slope be the same when the water is in uniform flow.

Here D = 10 feet, c*/g
=

200, and i/i = 5000. Then

|)
- *^J

/ = -

Now suppose that a break occurs in the bank of the canal out of which

rushes more water than that delivered in normal flow when the depth
is 10 feet, and let it be required to find the distance between two points

where the depths of water are 8 and 7 feet. Here d\/D = 0.8, for which
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TABLE 141. VALUES OF THE DROP-DOWN FUNCTION

d

D
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<t>(di/D)
=

0.3459, and dz/D =
0.7, for which <f(dz/D) = 0.1711. In-

serting these values in the equation, there is found / = 7890 feet.

In this case there is a certain limiting depth below which the above

formula is not valid. This limit is the value of x for which Bl/Bx

becomes zero or the value of x where the surface curve is vertical and

the bore occurs (Art. 139). From (140) i this happens when

o? = cH/g or d = D(&i(g$

and for the above example this limiting depth is found to be 3.4 feet.

Near this limit, however, the velocity becomes large, so that there is

much uncertainty regarding the value of the coefficient c.

When a given discharge per second is taken out of a forebay at the

end of a canal having its bed on a slope i, the above formula must be

modified. Let q be the discharge and let Di be the depth at a section

where the slope is s, then q equals cbDi VZ^sT If this value of q be sub-

stituted in the equation (138)i and then the same reasoning be followed

as at the beginning of Art. 140, it will be found that formula (141)

will apply to this case if Di(s/i)l be used instead of D. For example,

let q
= 3000 cubic feet per second, D\ = 10 feet, / = i/io ooo, c = 80,

and the width b = 100 feet. Then

5 = q*/cWDi
s = 1/7100 D = Di(s/i)* = 11.2 feet.

Now if it be required to find the distance between two points where the

depths of water are 10 and 9 feet, formula (141) can be directly applied,

and accordingly there is found, by the help of Table 141,

/ = 10 000(10 9)+ 109 800(0.578 0.355)
= 14 400 feet,

and hence a forebay admitting the given discharge will not draw down

the water to a depth less than 9 feet if it be located 14 400 feet down-

stream from the section where the mean depth is 10 feet.

Navigation canals are often built with the bed horizontal between

locks, and here i = o. The above formula cannot be applied to this

case because the differential equation (138)2 vanishes when i is zero.

To discuss it, equation (138) i must be resumed, and, inverting the same,

S[ = cW c2

&/ f g

The integration of this between the limits di and d* gives

I =
, W - ^4

)
- -

(dl
-

d,) (141),
4?

2
g
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from which / may be computed when
</

is known. As an example,
take a rectangular trough for which q

= 20 cubic feet per second,

6=5 feet, c =
89, and let d\ = 2.00 feet and d-t

=
1.91 feet. Then

from the formula /Ss found to be 317 feet. This is the reverse of the

example at the end of Art. 137, where / was given as 333 feet, so that

the agreement is very good.

To compare a canal having a level bed with the one previously

considered, the same data will be used, namely, d\ = 10 feet, d* = 9
feet, b = ioo feet, c =

80, and q = 3000 cubic feet per second. Then
from (141)2 there is found

/ = i. 778(10* 9
4
) 200(10 9)

= 5920 feet,

and accordingly the water level is drawn down in one-third of the dis-

tance of that of the previous case. The quantity of water that can be

obtained from a navigation canal is always less than from one having
a sloping bed, and it has frequently happened, when such a canal is

abandoned for navigation purposes and is used to furnish water for

power or for a public supply, that the quantity delivered is very much
smaller than was expected.

The method of computation explained at the end of Art. 140

may be used also to determine the drop-down curve. Referring

to Fig. 140ft the upper curve will be the original one and the lower

one that which is obtained by computation. The formula (140)3

is to be used by taking h\, di, pi for the upper curve and hi, a2 , P*

for the lower one. For example, let the data for a station on

the upper original curve be a\ = 600 square feet and pi
= 80

feet, a* = 480 square feet and />2
= 66 feet. Let the elevations

of two points on the upper curve be 18.26 and 16.68 feet so that

hi =
1.58 feet, then the fall in the lower curve is

and hence when the elevation of the first station on the lower

curve is 16.26 feet, the probable elevation of the second station

on that curve is 13.69 feet. The fall 2.57 feet is here probably

liable to a considerable error, since the application of (141 )i to

these data gives a much smaller result for /r2 . Experiments

are greatly needed in order to test the comparative value of
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these two methods of computation, and these, on a small scale,

might well be undertaken in the hydraulic laboratory of an engi-

neering college.

Prob. 141a. A canal from a river to a power house is two miles long,

its bed is on a slope of i/io ooo, and c is 70. When the water is in uniform

flow, the depth D is 6.0 feet, and the discharge is 800 cubic feet per second.

If there be a power house which takes 1000 cubic feet per second, find the

probable depth of water at the entrance to its forebay.

Prob. 1416. Show that the last formula in Art. 135, when reduced to

the metric system, becomes v = ' + 6.1 y/rs.

Prob. I4lc. A stream 181 meters wide and 5 meters deep has a dis-

charge of 1318 cubic meters per second. Find the height of backwater

when the stream is contracted by piers and abutments to a width of 96 meters.

Prob. I4ld. Which has the greater discharge, a stream 1.2 meters deep
and 20 meters wide on a slope of 3 meters per kilometer, or a stream 1.6

meters deep and 26 meters wide on a slope of 2 meters per kilometer ?

Prob. 141e. A stream 2 meters deep is to be dammed so that water shall

be 4 meters deep at the dam. Its slope is 0.0002 and its channel is such that

the metric value of c is 39. Compute the distance to a section up-stream
where the depth of water is 3.6 meters.
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CHAPTER 11

WATER SUPPLY AND WATER POWER

ART. 142. RAINFALL

All the water that flows in a stream has at some previous time

been precipitated in the form of rain or snow. The word "rain-

fall" means the total rain and melted snow, and it is usually

measured in vertical inches of water. The annual rainfall is

least in the frigid zone and greatest in the torrid zone; at the

equator it is about 100 inches, at latitude 40 about 40 inches,

and at latitude 60 about 20 inches. There are, however, cer-

tain places where the annual rainfall is as high as 500 inches, and

others where no rain ever falls. In the United States the heaviest

annual rainfall is near the Gulf of Mexico, where 60 inches is

sometimes registered, and near Puget Sound, where 90 inches is

not uncommon. In that large region, formerly

called the Great American Desert, which lies be-

tween the Rocky and Sierra Nevada mountains,

the mean annual rainfall does not exceed 15

inches, and in Nevada it is only about 7! inches.

The amount of rainfall in any locality depends

upon the winds and upon the neighboring moun-

tains and oceans.

The standard type of rain gage used by the

U. S. Weather Bureau has a diameter of 8 inches.

The rain falling into the gage passes down through

the funnel shown in Fig. 1420 and into the small

cylinder A, the area of which is one-tenth that of

the gage. One inch of rainfall therefore will give a

depth of 10 inches in the cylinder A and small falls can thus be

accurately measured. As the cylinder A fills it overflows into

1
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the body of the gage B, and when measured is simply poured
into the cylinder A after the water it contains has been measured

and poured out. These gages should be read each day in

order that the loss due to evaporation may. not become exces-

sive and introduce material errors. Other forms of rain gages

which record on a chart each one-hundredth of an inch of

rainfall at the time when it falls are made. Such gages are

of particular use in determining the rate of rainfall and the time

of the fall rather than its total quantity.

At any place the rainfall in a given year may vary consider-

ably from the mean derived from the observations of several

years. Thus, at Philadelphia, Pa., the mean annual rainfall is

about 42 inches, but in 1890 it was 50.8 inches and in 1885 it was

only 33.4 inches. Similarly at Denver, Col., the mean is about

14 inches, but the extremes are about 20 and 9 inches. When
a very low rainfall occurs, that of the year preceding or following

is also apt to be low, and estimates for the water supply of towns

must 'take into account this minimum annual rainfall. The

distribution of rainfall throughout the year must also be con-

sidered, and for this purpose the rainfall records of the given

locality should be obtained from the publications of the U. S.

Weather Bureau as well as from all other available sources

and be carefully discussed. In making plans for a water supply
it should be the aim to store a sufficient quantity so that an ample
amount will be available at the end of the driest period which is

likely to occur. In Table 142 are shown the average rainfalls

at a number of places in the United States for the four seasons

and for the year; in estimates for very wet years about 25 per-

cent may be added to these values, while for very dry years about

25 percent maybe subtracted.

As illustrating the variations from the mean rainfall which

may be expected at any place the following example is given.

The mean rainfall at Philadelphia is about 42 inches, and the

following are some of the values for various years : 29.6 inches for

1825, 30.2 inches for 1881, 61.3 inches for 1867, and 55.5 inches

for 1840.
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TABLE 142. RAINFALL IN TIN: UNITED STATES*

City
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The distribution of rainfall from place to place is also subject

to many variations, some local and others general in their nature.

Among them may be mentioned both the topography and the

1830 1910

altitude of the country and their relation to the prevailing wind

direction. The presence of large bodies of water in the neigh-

borhood also has its influence.
'

As examples of such variations in rainfall there may be mentioned

the Esopus and Catskill watersheds in New York.* Their areas are

nearly the same, they both drain into the Hudson River from the west,

and their centers are not more than 25 miles apart, yet the rainfall on

the former is about 20 percent greater than on the latter. As one other

example there may be mentioned the rainfall at "Number 4" in

northern New York in the Western Adirondacks and Avon on the

Genessee River 23 miles south of Lake Ontario. These two stations

are but 145 miles apart, yet the average yearly rainfall at the former is

50.4 inches, while at the latter it is only 27.0 inches. In determining the

rainfall at any point or for any given area all available records must

be examined and all other collateral evidence carefully analyzed,

particularly in cases where estimates of the stream flow are to be based

on estimates of the rainfall.

Prob. 142. Consult the
"
Instructions for Voluntary Observers," pub-

lished by the United States Weather Bureau, and describe a method of

determining the amount of rainfall contained in a given depth of snowfall.

In making reports how much rainfall on the average is to be taken as

representing a snowfall of 12 inches?

*
Monthly Weather Review, March, 1907.
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ART. 143. EVAPORATION

After rain has fallen evaporation from both land and water

surfaces at once begins and continues until all of the rainfall has

passed off into the atmosphere, where it is condensed into clouds

and again falls as rain, thus completing the cycle. Like rainfall

the evaporation is to be measured in inches of depth. Various

experiments on the evaporation from water surfaces have been

made, and a number of the results which have been derived are

shown in Table 143a.

TABLE 143a. MONTHLY AND YEARLY EVAPORATION FROM
WATER SURFACES

Place
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the streams, while in a flat country it passes off more slowly, and

the amount of the evaporation is thus increased.

Experiments on the evaporation from earth, from short

grass and long grass surfaces have been made, and some results

are shown in Table

TABLE 1436. MONTHLY AND YEARLY EVAPORATION FROM LAND
SURFACES

Place
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In the Atlantic States it may be said that the annual evapora-

tion from land surfaces is about 45 percent and that from water

surfaces about 60 percent of the annual rainfall, so that about

one-half of the rainfall reaches the streams and may be utilized.

In the arid regions west of the Rocky Mountains the percentages

of evaporation are much higher, as indicated in Table 143a.

Many attempts to deduce a formula which will take account of

the various factors which influence evaporation have been made but

without definite success. The problem is a very complicated one.

Vermeule has deduced the formula

=
(i5-5 + o.i6R)(o.osT- 1.48)

where R is the annual rainfall and E the annual evaporation in inches,

and T is the mean annual temperature in Fahrenheit degrees.* If

T = 49.6, this becomes E =
15.5 + 0.16 R^ which is a mean value for

New Jerseyjmd neighboring states
;
if T be 47, the evaporation is 10

percent less, and if T be 52, it is 10 percent more, than this mean.

The evaporation in different months varies greatly, the mean monthly

temperature being the controlling factor. The following are average

values given by Vermeule for the vicinity of New Jersey, where the

mean annual temperature is 4Q.6 ;
r representing mean monthly rain-

fail and e mean monthly evaporations in inches :

Jan., e = o.27 + o.ior July, e =

Feb., e = o.3o+ o.ior Aug., e =

March, e = o.48+ o.ior Sept., e = i.63 + o.2or

April, e = o.87 + o.ior Oct., e = o.88 + o.i2r

May, e=i.87 + o.2or Nov., e = 0.66 + 0. IOT

June, e = 2.5o+ o.25r Dec., e = 0.42 + o.ior

To obtain the monthly evaporations for places of mean annual tem-

perature T, the values found for e are to be multiplied by 0.05T -

1.48. Thus, if there be 8 inches of rain in July, e = 5.40 inches, and

if the mean annual temperature be 56, this is to be increased by 32

percent. Vermeule 's formulas for evaporation were deduced from

a consideration of the relation between the rainfall and the observed

flows of a number of streams in the New England and Middle States.

They take account of the effect of unequal distribution of the rainfall

* U. S. Geological Survey of New Jersey (Trenton, 1894), vol. 3, p. 76.
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throughout the year and give results which agree well with actual

gagings if care be taken to determine a proper iactorJor-each-water-

shed to which they are applied.*

Like rainfall the evaporation varies greatly, even in regions not

widely separated. In Art. 142 the difference in the rainfall on the

Esopus and Schoharie watersheds in New York State was referred to.

The evaporation on the Esopus will probably average about 15 inches

per year, while on the Catskill it is not far from 19 inches, a differ-

ence of over 20 percent in a distance of less than 30 miles.

Experiments on evaporation are of interest and value, but the best

results as to its amount are determined by taking the difference between

the amount of the rainfall and the results of measured stream flows.

In this manner all of the factors are taken account of and the most

accurate results obtained. Experiments made by collecting the rain-

fall in pans and measuring the depth of water from time to time are not

highly reliable, since the size of the pan influences the results. It

has been shown by the U. S. Department of Agriculture that the evap-
oration from a pan 2 feet in diameter is about 75 percent, that from

a pan 4 feet in diameter is about 50 percent, and that from a pan 6

feet in diameter is about 30 percent greater than the evaporation
from a large pond or lake.f

Prob. 143. The rainfall on a watershed of 850 square miles is 44.8

inches. Assuming a seasonal distribution as at New York (Table 142)

compute the evaporation by Vermeule's formula.

ART. 144. GROUND WATER AND RUNOFF

When the ground is frozen and the precipitation does not

accumulate in the form of ice and snow, the runoff from a water-

shed is closely .equal to the rainfall minus the evaporation. If

three inches of rainfalls per month and one-third of this evaporates,
the runoff will be nearly 2 cubic feet per second for each square
mile of the watershed. The discharge due to a heavy rainfall

occurring in a short period or to the melting of snow may be

twenty or thirty times as great. A rainfall of 10 inches occurring
in two days, if three-fourths of it is delivered at once to the

streams, will give a flood discharge of about 100 cubic feet per

*
Monthly Weather Review, March, 1907.

t American Civil Engineers' Pocket Book, 1911, p. 1286.
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second per square mile of watershed area. It is not usually

necessary to consider these flood discharges in estimates for water

supply and water power, except in order to take precautions

against the damage they may cause.

In Table 144a are shown some observed flood flows of various

small and large streams in the United States.

TABLE 1440. OBSERVED MAXIMUM FLOOD FLOWS*

Stream and Place



374 Chap. 11. Water Supply and Water Power

be determined by measuring the flow over a weir (Chap. 6) or

by daily gage height readings in connection with a discharge curve

which has been determined by gagings of the flow at various

water stages (Art. 131). The runoff is usually expressed as a

percentage of the rainfall, thus if F be the rainfall, E the evapora-

tion, and R the runoff, all in inches, then R = F E, and as a

percentage of the rainfall the runoff is ioo(F E)/F.

In Table 1446 are shown some observed values of the rainfall

and runoff on a number of streams in the United States.

TABLE 144ft. OBSERVED RAINFALL AND RUNOFF *
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occur in impact (Art. 90)! When the slope of the surface of the

ground water becomes zero, the streams are dry if there be no

rainfall. The discharge of a stream in a dry season hence depends

upon the depth and slope of the ground water, and this in turn

depends upon the previous rainfall, the topography of the country,

and the character of the soil.

While data regarding rainfall and evaporation will furnish

valuable information regarding the mean annual flow of a stream,

they will usually fail to indicate the mean discharge during differ-

ent months. For this purpose the study of discharge curves

and gage heights (Art. 134) is important, and if there be none

for the stream in hand, it will be necessary to make a few gagings

at different stages of water and to collect information regarding

the lowest stages that have been observed in dry years.

In irrigation work quantities of water are often estimated

in terms of a convenient unit called the acre-foot, which is the

quantity which will cover one acre to a depth of one foot, namely,

43 560 cubic feet. The discharge of a stream is often stated in

acre-feet per day. One acre-foot per day is 0.5042 cubic feet per

second, or one cubic foot per second is 1.983 acre-feet per day.

One acre-foot of water is 325 851 U. S. gallons, and i oooooo

gallons is 3.0689 acre-feet. One inch of rainfall per month is,

very closely, 0.9 cubic feet per second per square mile.

In irrigation estimates the "duty" of water is to be regarded.

This is defined as the number of acres that can be irrigated by a

supply of one cubic foot per second, and it usually ranges from

60 to loo acres. An inverse measure of duty is the number of

vertical inches of water required to irrigate any area, this usually

ranging from 1 8 to 24 inches per year. The acre-foot is also fre-

quently used in statements of duty of water. The methods of

measuring the water by orifices and modules in terms of the

miner's inch unit have been explained in Art. 55.

The hydraulics of irrigation engineering differs in no respect from

that of water supply and water power. Water is collected in reservoirs

or obtained by damming a river, and it is led by a main canal to the

area to be irrigated, and there it is distributed through smaller lateral
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canals to the fields. The smaller the canal or ditch, the steeper be-

comes its slope, and in the final application to the crops the flow in

the furrows is often normal to the contours of the surface. In a river

system the brooks feed the creeks, and the creeks feed the river, the

flow being from the smaller to the larger ;
in an artificial irrigation

system, however, the flow is from the larger to the smaller channel.

Seepage into the earth from an irrigation canal constantly goes

on, unless its bed be puddled with clay or lined with concrete, and

this loss of water is often very heavy. For new canals it is often as

high as 50 percent of the water, but for old canals it may become

lower than 10 percent. In making estimates for an irrigation supply

it is hence necessary to take into account this seepage loss, and also

to consider that due to evaporation.

Prob. 144. If all the rainfall that does not evaporate flows into the

stream, find the runoff in cubic feet per second from a watershed of 1225

square miles during a month when the rainfall is 3.6 inches, the mean annual

temperature being 48. 5 Fahrenheit. Also for the temperature of 49. 5.

ART. 145. ESTIMATES FOR WATER SUPPLY

The consumption of water in American cities is, on the average,

about 100 gallons per person per day, the large cities using more

and the small ones less than this amount. The daily consump-
tion in July and August is from 15 to 20 percent greater than the

mean, owing to the use of water for sprinkling, while during

January and February it is also greater than the mean in the

colder localities, owing to the large amount that is allowed to run to

waste in houses in order to prevent the freezing of the pipes. On

Mondays, in small towns when every household is at work on

the weekly washing, the consumption may be put at 50 percent

higher than the mean for the week. Accordingly if the yearly

mean be 100 gallons per person per day, the Monday consump-
tion during very hot or very cold weather may be as high as 1 50

gallons per person per day. When a large fire occurs, the hourly

consumption for this purpose alone in a fire district of 10 ooo

people may be at the rate of 175 gallons per person per day. In

general the maximum available hourly supply should be from

three to four times as great as the mean daily consumption.



Estimates for Water Supply. Art. 146

When water is to be pumped from a river directly into the

pipes, without tank or reservoir storage, the capacity of the pumps
should be such that during the occurrence of fires at lea>t three

times the mean daily consumption may be furnished. When
a pump delivers water to a distributing reservoir, its capacity

need not be so high as in the case of direct pumping, for the n

voir storage can be drawn upon in case of fire. When the reser-

voir is large, the pump capacity need be only sufficient to lift the

annual consumption during the time when it is in operation. The

subject of pumping is an extensive one, but it will be briefly

treated from a hydraulic standpoint in Arts. 192-201.

Gravity supplies are those obtained by impounding the runoff

of a watershed at an elevation sufficiently high so that the water

will flow without pumping to the places where it is to be consumed.

Pumped supplies are obtained either from a stream which lies too

low to furnish the water by gravity or from the ground from

water-bearing strata which may be termed natural underground
reservoirs. Such areas in a sandy country may yield as high as

i ooo ooo gallons per day per square mile. The borough of

Brooklyn of the City of New York obtains its water from the

sands" of Long Island, and a good example of the methods to be

followed in estimating on such a supply is to be found in a

report by Burr, Hering, and Freeman.*

In estimating on the safe yield of a surface watershed a study

of the existing rainfall and stream flow data should be made.

In the absence of the latter, estimates of the flow may be made

by considering the rainfall records and computing the evapora-

tion after allowing for all of the causes by which it is influenced.

In some cases it will be found that even few rainfall data are

available, and it then becomes necessary to consider the records

at the nearest points where such observations have been made,

and deduce values for the rainfall in the locality being considered.f

In making estimates of this character all evidence should be

carefully considered in order to avoid errors.

*
Report on Additional Water Supply, New York, 1903.

f Monthly Weather Review, March, 1007.
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When gagings of the stream being studied are available,*

the problem is a simpler one, but the period during which the

gagings were taken must be examined with reference to its re-

lation with the rainfall cycle (Art. 142). The results shown by
such a series of gagings during a period of high rainfall would

differ materially from those during a low cycle. This considera-

tion is of particular importance when determining on the storage

required for a water supply or for a power plant on a stream of

moderate size, while on larger streams the controlling factor is

often simply the quantity and duration of the minimum flow.

This minimum is generally less dependent on the rainfall cycle

than is the total yearly yield of the stream.

Having determined on the quantity of water to be supplied

and on the flow for a series of years of the stream from which

the water is to be obtained, it becomes necessary to fix on the

volume of storage which will be necessary to tide over the driest

period which is likely to occur. For this purpose the method pro-

posed by Rippl f is a convenient one. It consists essentially in

determining the net available stream flow for each month, after

making allowances for evaporation from the reservoir surfaces

which will result from the new construction and for all other

possible losses. The total flow for each month is then added to

the total of the months preceding and since the beginning of the

period being studied. The total flow from the beginning of the

period to the end of each month is thus determined and may be

plotted as in Fig. 145a. The inclination of the curve AM joining

the points so plotted thus represents the rate of net available

stream flow, and may on occasion have a negative value as at

7, when the evaporation, leakage, and other losses are larger

than the quantity of water available in the stream.

The amount of water to be used is now plotted as the line AB,
it being assumed that the use is at a practically constant rate.

Wherever the inclination of the curve is greater fehan that of the

lineAB, the net stream flow is greater than the draft, and wherever

* Transactions American Society Civil Engineers, vol. 59.

f Proceedings Institution Civil Engineers, vol. 71.
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it is less the draft is in excess of the available water. To dt

mine the amount of storage necessary to tide over such a period

of deficiency, 7, if the line EF be drawn parallel to AB and tan-

gent to the curve at E, the maximum ordinate /// will, on the scale

1881

of the diagram, indicate the amount' of water which would have

been necessary to maintain the uniform rate of draft as indicated

by the line AB. Similarly if AD were the uniform rate of draft,

the maximum ordinate JK between EG, drawn parallel to A 7),

and the curve would represent the storage volume necessary to

maintain the draft AD from A to G. The maximum uniform

rate of draft which could be obtained from A to G would be

represented by the inclination of the lineal (7, but this rate, as also

AB and A D, could not be constantly maintained unless the neces-

sary storage was available at the beginning of the period at .1.

In case the tangent to any summit of the curve and parallel to

the assumed rate of draft should fail to intersect the curve. It

would be indicated that the draft was in excess of the total yield

for the period under consideration.

Another graphical method is to plot the summation of the monthly
differences between the net stream flow and the assumed uniform draft.

In Fig. 1456 if the reservoir be assumed to be full at the beginning

of the period, then for the next three months the stream flow exo

the draft and an overflow occurs as indicated above the zero lino.
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Above this line the actual amount of overflow in each month is

plotted. At the end of the three months the draft begins to exceed

the net stream flow and the reservoir level falls, as indicated by the

continuous line. By the early part of the year 1891 the reservoir has

1890 1891 1892

Fig. 1456.

1893 1894

again filled. The process is thus continued, and it is found that to

tide over the period 1890 to 1894, if the reservoir be full at the be-

ginning, a storage capacity of 3 billions of gallons is required.

The necessary volume of storage having thus been determined,
it is usual in proportioning the reservoir to make an allowance to cover

the uncertainties in the data as well as to provide a factor of safety

against the occurrence of drier years than those covered by the

records. Such an allowance may range from 10 to 50 percent of

the storage as determined by the methods of Figs. I45a and 145&.

The quantity of storage necessary is dependent on the proposed
rate of draft, but in general it may be said in the northeastern part of

the United States, on rainfalls of from 38 to 50 inches, that a storage

capacity of 250 ooo ooo gallons per square mile of watershed will per-

mit of a safe uniform draft of from 600 ooo to 900 ooo gallons per square
mile per day, the smaller figure being applicable to flat watersheds of

low rainfall and the larger to those which are steep in slope and have

higher rainfall.

After the height of the water level of the reservoir is fixed, the

dimensions of its waste weir may be computed from Arts. 69 and 144

and the size of the main pipe line by Art. 97. For the latter com-

putation proper pressures must be assumed throughout the town, so

that ample head may be provided for fire contingencies. When the

main divides into branches, the problem of computing the diameters
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from the given data is indeterminate (Art. 105), and hence it will prob-

ably be as well to assume at the outset the sizes of the main and its

branches. The velocities corresponding to the given quantities and

the assumed sizes being first computed, the pressure-heads at a num-

ber of points are found. If these are not satisfactory, other sizes are

to be taken and the computation is to be repeated. The successful

design will be that which will furnish the required quantities under

proper pressures with the least expenditure.

Prob. 145. How many cubic feet per second per square mile are equiv-

alent to a rainfall of one inch per month ?

ART. 146. ESTIMATES FOR WATER POWER

The methods of estimating the water power that can be

derived by damming a stream are to some extent similar to those

for water supply. In the absence of gagings the records of rain-

fall and evaporation are to be collected and discussed, but a few

gagings will probably give more definite information if records of

water stages during several years can be had. A method of de-

termining the advisable extent of a water power development

when records of stream flow are available has been developed

by Herschel.*

In nearly every situation the stream flow in connection with

the storage which can be obtained at a reasonable expense is

not sufficient to continuously generate the power which is re-

quired. In such cases it is necessary to supplement the water

power with an auxiliary steam plant located at some point within

the territory to be served where fuel can be obtained most

economically. In order to determine on the capacity of such an

auxiliary plant the general method shown in Fig. 145a may be

used. With the known volume of available storage and net

flow of the stream the maximum uniform rate of draft can be

determined. The capacity of the auxiliary steam plant may
then be considered as the difference between the power capacity

required and that furnished by the minimum flow of the stream ;

while the advisable extent of the water power development will

depend upon considerations of the river discharge, the cost of

* Transactions American Society of Civil Engineers, 1007, vol. 58, p. 29.
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the development, and the cost of installation and operation of

the auxiliary steam plant. No definite rules are to be laid

down in this regard, as the exact proportion to be finally decided

upon depends on many factors which vary in every locality.

The power needed to be generated by a plant varies from

hour to hour. The greatest demand is called the "peak." A
peak load is one of very short duration and can be met by

installing an excess of turbine and generator capacity and by

providing storage in a pond of adequate size. It is probable,

however, that in many cases the auxiliary heat engines already

installed to meet low water conditions will more economically

supply the power for the peak loads than would the necessary

excess turbine, generator, power house and storage capacity.

At times of high water the head on the wheels is often re-

duced, due to the change in slope of the river, and the normal

output of the plant is thus diminished. The "
fall increaser

"

(Art. 181) will operate to increase the available head, or where

this is not provided the auxiliary steam plant must be called on

to supply the deficiency.

Let W be the weight of water delivered per second to a hy-

draulic motor, and h be its effective head as it enters the motor,

h being due either to pressure (Art. 11), or to velocity (Art. 22),

or to pressure and velocity combined (Art. 24). The theoretic

energy per second of this water is

K = Wh (146)i

and if W be in pounds and h in feet, the theoretic horse-power of

the water as it enters the motor is

(146) 2

and this is the power that can be developed by a motor of effi-

ciency unity. The work k delivered by the motor is, however,

always less than 'K, owing to losses in impact and friction, and the

horse-power hp of the motor is less than HP. The efficiency

of the motor is

= k/Wh or e = hp/HP
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and the value of this for turbine wheels is usually about 0.80;

that is, the wheel transforms into useful work about 80 piT

of the energy of the water that enters it.

In designing a water-power plant it should be the aim to ar-

range the forebays and penstocks which lead the water to tin-

wheel so that the losses in these approaches may be as small as

possible. The entrance from the head race into the forebay,

from the forebay into the penstock, and from the penstock to the

motor should be smooth and well rounded
;
sudden changes in

cross-section should be avoided, and all velocities should be low

except that at the motor. If these precautions be carefully ob-

served, the loss of head outside of the motor can be made very
small. Let H be the total head from the water level in the head

race to that in the tail race below the motor. The total available

energy per second is WH, and it should be the aim of the designer

to render the losses of head in the approaches as small as possible

so that the effective head h may be as nearly equal to H as pos-

sible. Neglect of these precautions may render the effective

power less than that estimated.

The efficiency c\ of the approaches is the ratio of the energy

K of the water as it enters the wheel to the maximum available

energy WH, or e\
= K/WH. The efficiency E of the entire plant,

consisting of both approaches and wheel, is the ratio of the work k

delivered by the wheel to the energy WH, or

or, the final efficiency is the product of the separate efficiencies.

If the efficiency of the wheel be 0.75 and that of the approaches

0.96, the efficiency of the plant as a whole is 0.72, or only 72 per-

cent of the theoretic energy is utilized. Usually the efficiency

of the approaches can be made higher than 96 percent.

In making estimates for a proposed plant, the efficiency of

turbine wheels may generally be taken at 80 percent ;
the el i

tive work is then o.&oWh, and accordingly if the wheels are

required to deliver the work k per second, the approaches arc to

be so arranged that Wh shall not be less than 1.25^. Especially
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when the water supply is limited it is important to make all

efficiencies as high as possible.

Prob. 146. A stream delivers 500 cubic feet of water per second to a

canal which terminates in a forebay where the water level is 8.1 feet above

the tail race. The wheels deliver 335 horse-power and their efficiency is

known to be 75 percent. How much power is lost in the forebay and pen-

stock ?

ART. 147. WATER DELIVERED TO A MOTOR

To determine the efficiency of a hydraulic motor by formula

(146) 3 the effective work k is to be measured by the methods of

Art. 149, and the head h to be ascertained by Art. 148. In order

to find the weight W that passes through the wheel in one second,

there must be known the discharge per second q and the weight

w of a cubic unit of water
;
then

W = wq

Here w may be found by weighing one cubic foot of the water,

or when the water contains few impurities its temperature may
be noted and the weight be taken from Table 3. In approximate

computations w may be taken at 62.5 pounds per cubic foot. In

precise tests of motors, however, its actual value should be ascer-

tained as closely as possible.

The measurement of the flow of water through orifices, weirs,

tubes, pipes, and channels has been so fully discussed in the pre-

ceding chapters, that it only remains here to mention one or two

simple methods applicable to small quantities, and to make a

few remarks regarding the subject of leakage. In any particular

case that method of determining q is to be selected which will

furnish the required degree of precision with the least expense.

For a small discharge the water may be allowed to fall into a

tank of known capacity. The tank should be of uniform horizontal

cross-section, whose area can be accurately determined, and then

the heights alone need be observed in order to find the volume.

These in precise work will be read by hook gages, and in cases of

less accuracy by measurements with a graduated rod. At the

beginning of the experiment a sufficient quantity of water must be

in the tank so that a reading of the gage can be taken
;
the water
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i^ then allowed to flow in, the time between the beginning and end

of the experiment being determined by a stop-watch, duly tested and

rated. This time must not be short, in order that the slight error-

in reading the watch may not affect the result. The gage is read

at the close of the test after the surface of the water becomes quiet,

and the difference of the gage readings gives the depth which has

flowed in during the observed time. The depth multiplied by the area

of the cross-section of the tank gives the volume, and this divided

by the number of seconds during which the flow has occurred fur-

nishes the discharge per second q.

If the discharge be very small, it may be advisable to weigh the

water rather than to measure the depths and cross-sections. The total

weight divided by the time of flow then gives directly the weight W.
This has the advantage of requiring no temperature observation,

and is probably the most accurate of all methods, but unfortunately

it is not possible to weigh a considerable volume of water except at

great expense.

When water is furnished to a motor through a small pipe, a com-

mon water meter may often be advantageously used to determine

the discharge (Art. 38). No water meter, however, can be regarded

as accurate until it has been tested by comparing the discharge as re-

corded by it with the actual discharge as determined by measurement

or weighing in a tank. Such a test furnishes the constants for cor-

recting the result found by its readings, which otherwise is liable

to be 5 or 10 percent in error. The Venturi meter (Art. 38) fur-

nishes an accurate method of measuring large quantities.

The leakage which occurs in the flume or penstock before the water

reaches the wheel should not be included in the value of W, which is

used in computing its efficiency, although it is needed in order to as-

certain the efficiency of the entire plant. The manner of determining

the amount of leakage will vary with the particular circumstances of

the case in hand. If it be small, it may be caught in pails and directly

weighed. If large in quantity, the gates which admit water to the

wheel may be closed, and the leakage being then led into the tail race,

it may be there measured by a weir, or by allowing it to collect in a

tank. The leakage from a vertical penstock whose cross-section is

known may be ascertained by filling it with water, the wheel being

still, and then observing the fall of the water level at regular intervals

of time. In designing constructions to bring water to a motor, it is
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best, of course, to arrange them so that all leakage will be avoided, but

this cannot always be fully attained, except at great expense.

The most common method of measuring q is by means of a weir

placed in the tail race below the wheel. This has the disadvantage
that it sometimes lessens the fall which would be otherwise available,

and that often the velocity of approach is high. It has, however, the

advantage of cheapness in construction and operation, and for any
considerable discharge appears to be almost the only method which is

both economical and precise. If the weir is placed above the wheel,

the leakage of the penstock must be carefully ascertained.

Prob. 147. A weir with end contractions and no velocity of approach
has a length of 1.33 feet, and the depth on the crest is 0.406 feet. The same
water passes through a small turbine under the effective head 10.49 feet.

Compute the theoretic horse-power.

ART. 148. EFFECTIVE HEAD ON A MOTOR

The total available head H between the surface of the water

in the reservoir or head race and that in the lower pool or tail

race is determined by running a line of levels from one to the other.

Permanent bench marks being established, gages can then be

set in the head and tail races and graduated so that their zero

points will be at some datum below the tail-race level. During
the test of a wheel each gage is read by an observer at stated

intervals, and the difference of the readings gives the head H.
In some cases it is possible to have a floating gage on the lower

level, the graduated rod of which is placed alongside a glass tube

that communicates with the upper level; the head H is then

directly read by noting the point of the graduation which coin-

cides with the water surface in the tube. This device requires
but one observer, while the former requires two

;
but it is usually

not the cheapest arrangement unless a large number of observa-

tions are to be taken.

From this total head H are to be subtracted the losses of head
in entering the forebay and penstock, and the loss of head in

friction in the penstock itself, and these losses may be ascertained

by the methods of Chaps. 8 and 9. Then

h = H-h f -h"
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is the effective head acting upon the wheel. In properly designed

approaches the lost heads h' and //" arc very small.

When water enters upon a wheel through an orifice which is

controlled by a gate, losses of head will result, which can be

estimated by the rules of Chaps. 5 and 6. If this orifice is in

the head race, the loss of head should be subtracted together

with the other losses from the total head H. But if the regulating

gates are a part of the wheel itself, as is the case in a turbine, the

loss of head should not be subtracted, because it is properly

chargeable to the construction of the wheel, and not to the ar-

rangements which furnish the supply of water. In any event that

head should be determined which is to be used in the subsequent
discussions : if the efficiency of the fall is desired, the total avail-

able head is required ;
if the efficiency of the motor, that effective

head is to be found which acts directly upon it (Art. 146).

When water is delivered through a nozzle or pipe to an im-

pulse wheel, the head h is not the total fall, since a large part of

this may be lost in friction in the pipe, but is merely the velocity-

head v
2
/2g of the issuing jet. The value of v is known when the

discharge q and the area of the cross-section of the stream have

been determined, and

h = v*/2g=(q/aY/2g

In the same manner when a stream flows in a channel against

the vanes of an undershot wheel the effective head is the velocity-

head, and the theoretic energy is

K = Wh = Wv*/2g = w?/2ga?

If, however, the water in passing through the wheel falls a dis-

tance hQ below the mouth of the nozzle, then the effective head

which acts upon the wheel is given by

In order to fully utilize the fall // it is plain that the wheel should

be placed as near the level of the tail race as possible.

Lastly, when water enters a turbine wheel through a pipe,

a piezometer may be placed near the wheel entrance to register

the pressure-head during the flow; if this pressure-head, ir.<
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ured upon and from the water level in the tail race, be called h\

and if the velocity in the pipe be v, then

h = hi + v
2
/2g

is the effective head acting on the wheel. It is here supposed

that the turbine has a draft tube leading below the water level

in the tail race; if this is not the case, hi should be measured

upward from the lowest part of the exit orifices.

Prob. 148. A pressure gage at the entrance of a nozzle registers 116

pounds per square inch, and the coefficient of velocity of the nozzle is 0.98.

Compute the effective velocity-head of the issuing jet.

ART. 149. MEASUREMENT OF EFFECTIVE POWER

The effective work and horse-power delivered by a water-

wheel or hydraulic motor is often required to be measured.

Water power may be sold by means bf the weight W, or quantity

q, furnished under a certain head, leaving the consumer to pro-

vide his own motor; or it may be sold directly by the number

of horse-power. In either case tests must be made from time to

time in order to insure that the quantity contracted for is actually

delivered and is not exceeded. It is also frequently required to

measure effective work in order to ascertain the power and effi-

ciency of the motor, either because the party who buys it has

bargained for a certain power and efficiency, or because it is

desirable to know exactly what the motor is doing in order to

improve if possible its performance.

The test of a hydraulic motor has for its object: first, the

determination of the effective energy and power; second, the

determination of its efficiency; and third, the determination of

that speed which gives the greatest power and efficiency. If the

wheel be still, there is no power; if it be revolving very fast, the

water is flowing through it so as to change but little of its energy
into work : and in all cases there is found a certain speed which

gives the maximum power and efficiency. To execute these tests,

it is not at all necessary to know how the motor is constructed

or the principle of its action, although such knowledge is very
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valuable, and is in fact indispensable to enable the engineer to

suggest methods by which its operation may be improved.

A method in which the effective work of a small motor may
be measured is to compel it to exert all its power in lifting a weight.

For this purpose the weight may be attached to a cord which

is fastened to the horizontal axis of the motor, and around which

it winds as the shaft revolves. The wheel then expends all its

power in lifting this weight W\ through the height h\ in t\ seconds,

and the work performed per second then is k W\h\lt\. This

method is rarely used in practice on account of the difficulty of

measuring t\ with precision.

The usual method of measuring the effective work of a hy-
draulic motor is by means of the friction brake or power dyna-
mometer invented by Prony
about 1780. In Fig. 149 is illus-

trated a simple method of apply-

ing the apparatus to a vertical

shaft, the upper diagram being

a plan and the lower an eleva-

tion. Upon the vertical shaft

is a fixed pulley, and against

this are seen two rectangular

pieces of wood hollowed so as

to fit it, and connected by two

bolts. By turning the nuts on

these bolts while the pulley is

revolving, the friction can be in-

creased at pleasure, even so as

to stop the motion
;
around these bolts between the blocks are

two spiral springs (not shown in the diagram) which press the

blocks outward when the nuts are loosened. To one of these

blocks is attached a cord which runs horizontally to a small

movable pulley over which it passes, and supports a scale-pan

in which weights are placed. This cord runs in a direction op-

posite to the motion of the shaft, so that when the brake is

tightened, it is prevented from revolving by the tension caused

Fig. Ml).
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by the weights. The direction of the cord in the horizontal

plane must be such that the perpendicular let fall upon it from

the center of the shaft, or its lever-arm, is constant
;

this can be

effected by keeping the small pointer on the brake at a fixed

mark established for that purpose.

To measure the work done by the wheel, the shaft is discon-

nected from the machinery which it usually runs, and allowed to

revolve, transforming all its work into heat by the friction be-

tween the revolving pulley and the brake, which is kept stationary

by tightening the nuts, and at the same time placing sufficient

weights in the scale-pan to hold the pointer at the fixed mark.

Let n be the number of revolutions per second as determined

by a counter attached to the shaft, P the tension in the cord which

is equal to the weight of the scale-pan and its loads, / the lever-

arm of this tension with respect to the center of the shaft, r the

radius of the pulley, and F the total force of friction between the

pulley and the brake. Now in one revolution the force F is over-

come through the distance 2irr, and in n revolutions through the

distance 27rrn. Hence the effective work done by the wheel

in one second is

k = F 27rrn = 2 rrrn - Fr

The force F acting with the lever-arm r is exactly balanced by the

force P acting with the lever-arm /; accordingly the moments

Fr and PI are equal, and hence the work done by the wheel in

one second is
k = 2TrnPl (149),

If P is in pounds and / in feet, the effective horse-power of the

wheel is given by
]Tp

= *Pl/sst>

As the number of revolutions in one second cannot be accurately

read, it is usual to record the counter readings every minute or

half-minute
;

if N be the number of revolutions per minute,

hp = 2-jrNPl/M ooo (149) 2

It is seen that this method is independent of the radius of the

pulley, which may be of any convenient size
;
for a small motor the

brake may be clamped directly upon the shaft, but for a large
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one a pulley of considerable size is needed, and a special arrange-
ment of levers is used instead of a cord.

The efficiency of the motor is now found by dividing the <

live work per second by the theoretic work per second. Let A'

IK* this theoretic work, which is expressed by Wh, where W and
h are determined by the methods of Arts. 147 and 148

;
then

e = k/K or e = Jtp/IIP

The work measured by the friction brake is that delivered at the

circumference of the pulley, and does not include that power
which is required to overcome the friction of the shaft upon its

bearings. The shaft or axis of every water-wheel must have at

least two bearings, the friction of which consumes probably about

2 or 3 percent of the power. The hydraulic power and efficiency

of the wheel, regarded as a user of water, are hence 2 or 3 percent

greater than the values computed from above formulas. For

example, let ^=12.5 pounds, /= 14.31 feet, and # = 635, then

21.6 horse-powers are in total delivered by the wheel, of which

about 0.6 horse-power is consumed in shaft friction.

There are in use various forms and varieties of the friction brake,

but they all act upon the principle and in the manner above described.

For large wheels they are made of iron, and almost completely encircle

the pulley ;
while a special arrangement of levers is used to lift the large

weight P.* If the work transformed into friction be large, both

the brake and the pulley may become hot, to prevent which a stream

of cool water is allowed to flow upon them. To insure steadiness of

motion, it is well that the surface of the pulley should be lubricated,

which for a wooden brake is well done by the use of soap. It is impor-

tant that the connection of the cord to the brake should be so made
that the lever-arm / increases when the brake moves slightly with the

wheel
;

if this is not done, the equilibrium will be unstable and tin-

wheel will be apt to cause the brake to revolve with it.

Prob. 149. Find the power and efficiency of a motor when the theoretic

energy is 1.38 horse-power, which makes 670 revolutions per minute, the

weight on the brake being 2 pounds 14 ounces and its lever-arm 1.33 fivt.

*
Thurston, in Transactions American Society of Mechanical Engineers,

1886, vol. 8, p. 359.
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,

ART. 150. TESTS OF TURBINE WHEELS

The following description of a test of a 6-inch Eureka turbine,

made in 1888 at the hydraulic laboratory of Lehigh University,

may serve to exemplify the methods of the preceding articles.

The water was measured by a weir from which it ran into a verti-

cal penstock 15.98 square feet in horizontal cross-section. This

plan of having the weir above the wheel is not a good one, but it

was here adopted on account of lack of room below the turbine.

When a constant head was maintained in the penstock, the quan-

tity of water flowing through the wheel was the same as that pass-

ing the weir
; if, however, the head in the penstock fell x feet per

minute, the flow through the wheel in cubic feet per minute was

6oq -f 15.98*, in which q is the discharge per second over the

weir. As the supply of water was very limited, the wheel could

not be run to its fully capacity. The level of water in the pen-
stock was read upon a head gage consisting of a glass tube behind

which a graduated scale was fixed, the zero of which was a little

above the water level in the tail race. The latter level was read

upon a fixed graduated scale having its zero in the same horizon-

tal plane as the first
;
these readings were hence essentially nega-

tive. The head upon the wheel is then found by adding the read-

ings of the two gages.

The vertical shaft of the turbine, being about 15 feet long,

was supported by four bearings, and to a small pulley upon its

Time on

April 13,
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upper end was attached the friction dynamometer, as described

in the last article. The number of revolutions was read from ,i

counter placed in the top of this shaft. The observations were

taken at minute intervals, electric bells giving the signals, so

that precisely at the beginning of each minute simultaneous read-

ings were taken by observers at the weir, at the head gage, at

the tail gage, and at the counter, the operator at the brake con-

tinually keeping it in equilibrium with the resisting weight in the

scale-pan by slightly tightening and loosening the nuts as required.

The above shows notes of all the observations of two sets of tests,

each lasting three minutes, the weight in the scale-pan being
different in the two sets.

The following are the results of the computations made from

the above notes for each minute interval. The second column

is derived from formula (63)i, using the coefficient corresponding
to the given length of weir and depth on crest. The third column

is obtained by taking the differences of the observed readings of

the penstock head gage. The fourth column gives the discharge

Interval

of

Time
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by dividing the numbers in the seventh by those in the sixth

column.

These results show that the mean efficiency of the wheel and

shaft under the conditions stated was about 35 percent ;
this low

figure being due to the circumstance that the gate was not fully

opened. It is also seen that the mean efficiency of the second set

is 2.2 percent greater than that of the first set; this is due to

the lower speed, and with still lower speeds the efficiency was found

to be lower, so that a speed of about 535 revolutions per minute

gives the maximum efficiency.

The work of Francis on the experiments made by him at

Lowell, Mass., will always be a classic in American hydraulic

literature, for the methods therein developed for measuring the

theoretic power of a waterfall and the effective power utilized

by the wheel are models of careful and precise experimentation.*

In determining the speed of the wheel he used a method somewhat

different from that above explained, namely, the counter attached

to the shaft was connected with a bell which struck at the com-

pletion of every 50 revolutions
;
the observer at the counter had

then only to keep his eye upon the watch, and to note the time at

certain designated intervals, say at every sixth stroke of the

bell. The number of revolutions per second was then obtained

by dividing the number of revolutions in the interval by the num-

ber of seconds, as determined by the watch. This method re-

quires a stop-watch in order to do good work, unless the observer

be very experienced, as an error of one second in an interval of

one minute amounts to 1.7 percent.

At Holyoke, Mass., there is a permanent flume for testing

turbines arranged with a weir which can be varied up to lengths of

20 feet, so as to test the largest wheels which are constructed.

As the expense of fitting up the apparatus for testing a large tur-

bine at the place where it is to be used is often great, it is some-

times required in contracts that the wheel shall be sent to a place

where a special outfit for such work exists. The wheel is mounted

in the testing flume, and there, by the methods explained in the

* Lowell Hydraulic Experiments, ist Edition, 1855 ; 4th, 1883.
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preceding articles, it is run at different speeds in order to d<

mine the speed which gives the maximum efficiency as well as the

effective power developed at each speed. As the efficiency of a

turbine varies greatly with the position of the gate which admits

the water to it, tests are made with the gate fully opened and at

various partial openings. The results thus obtained are not only
valuable in furnishing full information concerning the effective

power and efficiency of the wheel, but they also convert the turbine

into a water meter, so that when running under the same head as

during the tests, the quantity of water which passes through it

per second can at any time be closely ascertained by noting the

number of revolutions per second.

The following gives the results of the tests of an 8o-inch outward-

flow Boyden turbine, made at Holyoke in 1885, the gate being fully

opened in each experiment. The heads in the second column were

derived from the head and tail race gages, these being arranged so

Number
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Prob. 150. Compute the theoretic horse-power and the efficiency for

the above experiments, Nos. 15 and 21, on the large Boyden outward-flow

turbine.

ART. 151. FACTS CONCERNING WATER POWER

The number of horse-powers generated by water-wheels and

turbines and used in manufacturing establishments in the United

States was i 130 431 in 1870, i 225 379 in 1880, i 263 343 in 1890,

and i 727 258 in 1900 ;
these figures do not include the electric

power derived from water. In 1908* the total development
was 5 356 680 horse-powers in 52 827 wheels and turbines.

Since 1890 there has been a large development of water power
in connection with electric light and trolley service, and this

development promises to attain great proportions during the

twentieth century. It has been estimated that the rivers of the

United States can furnish about 212 ooo ooo horse-powers, so that

the possibilities for the future are almost unlimited.

Water power is sometimes sold by what is called the "mill

power," which may be roughly supposed to be such a quantity

as the average mill requires, but which in any particular case must

be defined by a certain quantity of water under a given head.

Thus at Lowell the mill power is 30 cubic feet per second under

a head of 25 feet, which is equivalent to 85.2 theoretic horse-

power. At Minneapolis it is 30 cubic feet per second, under 22

feet head, or 75 theoretic horse-power. At Holyoke it is 38 cubic

feet per second under 20 feet head, or 86.4 theoretic horse-power.

This seems an excellent way to measure power when it is to be

sold or rented, as the head in any particular instance is not subject

to much variation
;
or if so liable, arrangements must be adopted

for keeping it nearly constant, in order that the machinery in the

mill may be run at a tolerably uniform rate of speed. Thus

nothing remains for the water company to measure except the

water used by the consumer. The latter furnishes his own motor,

and is hence interested in securing one of high efficiency, that he

may derive the greatest power from the water for which he pays.

The perfection of American turbines is undoubtedly largely due

* Water Supply and Irrigation Paper, No. 234.
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to this method of selling power, and the consequent desire of the

mill owners to limit their expenditure for water. The turbine

itself, when tested and rated, becomes a meter by which the com-

pany can at any time determine the quantity of water that passes

through it.

A common method of selling the power which is generated

by turbines is by the nominal horse-power of the wheel as stated

in the catalogue of the manufacturer. The seller fixes a price per
annum for one horse-power on this basis, and the buyer furnishes

his own wheel. By this method no controversy can arise regard-

ing the amount of water used, for the purchaser has the right to

use all that can pass through the turbine. The head to be used

for finding the nominal horse-power is the mean head which can

be utilized by the wheel, and this must be agreed upon in advance

between the parties.

The power of electric generators is usually expressed in kilo-

watts. One English horse-power in 0.746 kilowatts, and one

metric horse-power is 0.736 kilowatts. One kilowatt is 1.340

English horse-powers or 1.360 metric horse-powers. The effi-

ciency of a good electric generator is about 95 percent, so that it

delivers 95 percent of the work imparted to it by the turbine

wheel
;

if the efficiency of this wheel is 75 percent, the combined

efficiency of the hydraulic and electric plant is 71 percent. Elec-

tric power is usually sold by the kilowatt-hour, this being meas-

ured by a wattmeter.

The available power of natural waterfalls is very great, but it is

probably exceeded by that which can be derived from the tides and

waves of the ocean. Twice every day, under the attraction of the

sun and moon, an immense weight of water is lifted, and it is theoret-

ically possible to derive from this a power due to its weight and lift.

Continually along every ocean beach the waves dash in roar and foam,

and energy is wasted in heat which by some device might be utilized

in power. The expense of deriving power from these sources is indeed

greater than that of the water wheel under a natural fall, but the time

may come when the profit will exceed the expense, and then it will cer-

tainly be done. Coal and wood and oil may become exhausted, but

as long as the force of gravitation exists, and the ocean remains upon
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which it can act, power, heat, and light can be generated in unlimited

quantities.

Prob. 151a. Deduce the simple and useful rule that one inch of rainfall

per hour is, very nearly, equivalent to one cubic foot per second per acre.

Prob. 1516. Find the theoretic horse-power of a plant where 1200 cubic

feet of water per second is used under a total head of 49.5 feet. If the

efficiency of the approaches is 99 per cent, the efficiency of the turbines

76 percent, and the efficiency of the dynamos 96 percent, what power in

kilowatts is delivered?

Prob. 151c. What is the theoretic metric horse-power of a plant where

112 cubic meters of water per second are used under a head of 23.5 meters?

If the efficiencies of the approaches, turbines, and electric generators are

98.5, 74.3, and 97.5 percent, respectively, compute the number of metric

horse-powers delivered, and also the power in kilowatts.

Prob. 151d. When a turbine is tested by a friction dynamometer, show

that its power in kilowatts is o.ooio^NPl, if P be the load on the brake in

kilograms, / its lever-arm in meters, and N the number of revolutions per

minute. When N = 200, P = 250 kilograms, and / = 2.01 meters, what

electric power is delivered by a dynamo attached to the turbine when the

efficiency of the dynamo is 97.2 percent ?

Prob. Idle. The hectare-meter is a convenient unit for estimating

large quantities, of water in irrigation and water-supply work. Show that

one hectare-meter is 10 ooo cubic meters. Show that 100 centimeters of

rainfall falling in one month is, very nearly, 0.004 cubic meters per second

per hectare.
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CHAPTER 12

DYNAMIC PRESSURE OF WATER

ART. 152. DEFINITIONS AND PRINCIPLES

The pressures exerted by moving water against surfaces which

change its direction or check its velocity are called dynamic,
and they follow very different laws from those which govern the

static pressures that have been discussed and used in the preceding

chapters. A static pressure due to a certain head may cause a

jet to issue from an orifice; but this jet in impinging upon a

surface may cause a dynamic pressure less than, equal to, or

greater than that due to the head. A static pressure at a given

point in a mass of water is exerted with equal intensity in all direc-

tions; but a dynamic pressure is exerted in different directions

with different intensities. In the following chapters the words
"
static

" and
"
dynamic

"
will generally be prefixed to the word

"
pressure," so that no confusion may result.

The dynamic pressure exerted by a stream flowing with a

given velocity against a surface at rest is evidently equal to that

produced when the surface moves in still water with the same

velocity. This principle was applied in Art. 40 in rating the

current meter, the vanes of which move under the impulse of the

impinging water. The dynamic pressure exerted upon a moving

body by a flowing stream depends upon the velocity of the body
relative to the stream.

The "impulse" of a jet or stream of water is defined as the

dynamic pressure which it is capable of producing in the direction

of its motion when its velocity is entirely destroyed in that direc-

tion. This can be done by deflecting the jet normally sidewise by
a fixed surface; when the surface is smooth, so that no energy

is lost in frictional resistances, the actual velocity remains un-
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altered, but the velocity in the original direction has been ren-

dered null. In Art. 27 it is shown that the theoretic force of

impulse of a stream of cross-section a and velocity is

(152)

Fig. 152.

in which W and q are the weight and volume delivered per second,

and w is the weight of one cubic unit of water. This equation

shows that the dynamic pressure that may be produced by im-

pulse is equal to the static pressure due

to twice the head corresponding to the

velocity v. It would then be expected,

when two equal orifices or tubes are

placed exactly opposite, as in Fig. 125,

and a loose plate is placed verti-

cally against one of them, that the

dynamic pressure upon the plate caused

by the impulse of the jet issuing from A
under the head h would balance the static pressure caused by
the head ih. This conclusion has been confirmed by experiment,

for a tube A which has a smooth inner surface and rounded

inner edges so that its coefficient of discharge is unity.

The reaction of a jet or stream is the backward dynamic

pressure, in the line of its motion, which is exerted against a

vessel out of which it issues, or against a surface away from which

it moves. This is equal and opposite to the impulse, and the

equation above given expresses its value and the laws which

govern it. The expression for the reaction or impulse F in (152)

may be also proved as follows : The definition by which forces

are compared with each other is, that forces are proportional to

the accelerations which they can produce. The weight W, if

allowed to fall, acquires the acceleration g ;
the force F which can

produce the acceleration v is hence related to W and g by the

equation F/W =
v/g, and accordingly F = W -

v/g.

The forces of impulse and reaction do not really exist in a stream

flowing with constant velocity and direction, although F indicates

the force that was exerted in putting the stream into motion and the
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force that is required to stop it. When the direction of the stream U

changed by opposing obstacles, the impulse and reaction produce

dynamic pressure ; if, in making this change, the absolute velocity is

retarded, energy is converted into work. Impulse and reaction are of

practical value, because the resulting dynamic pressures may be uti-

lized for the production of work. For this purpose water is made
to impinge upon moving vanes, which alter both its direction

and velocity, thus producing a dynamic pressure P, which overcomes

in each second an equal resisting force through the space . The work

done per second is then k = Pu, and it is the object in designing a hy-

draulic motor to make this work as large as possible ;
for this purpose,

the most advantageous values of P and u are to be selected.

The word "
impact" is sometimes popularly used to designate

impulse or pressure, but in hydraulics it refers to those cases where

energy is lost in eddies and foam, as when a jet impinges into water

or upon a rough plane surface. Impact is not defined in algebraic

terms, but the energy lost in impact may be so defined and computed.

When the energy of a stream of water is to be utilized, losses due to

impact should be avoided. Whenever impact occurs, kinetic energy

is transformed into heat.

Prob. 152. When a jet is one inch in diameter, how many gallons

per second must it deliver in order that its impulse may be 100 pounds ?

ART. 153. EXPERIMENTS ON IMPULSE AND REACTION

A simple device by which the dynamic pressure P exerted

upon a surface by the impulse and reaction of a jet that glides

over it can be directly weighed is

shown in Fig. 153a. It consists

merely of a bent lever supported

on a pivot at O, and having a plate

A attached at the lower end of the

vertical arm upon which the stream

impinges, while weights applied at

the end of the other arm measure

the dynamic pressure produced by the impulse. By means of an

apparatus of this nature, experiments have been made by Bidone,

Weisbach, and others, the results of which will now be stated.
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When the surface upon which the stream impinges is a plane

normal to the direction of the stream, as shown at A
,
the dynamic

pressure P closely agrees with that given by the theoretic formula

for F in the last article, namely,

P = W^
g =2wa^ (153)

being about 2 percent greater according to Bidone, and about

4 percent less according to Weisbach.. The actual value of P
was found to vary somewhat with the size of the plate, and with

its distance from the end of the tube from which the jet issued.

When the surface upon which the stream impinges is curved,

as at B, or so arranged that the water is turned backward from

the surface, the value of the dynamic pressure P was found to be

always greater than the theoretic value, and that it increased

with the amount of backward inclination. When a complete
reversal of the original direction qf the water was obtained, as

at C, it was found that P, as measured by the weights, was nearly

double the value of that against the plane. This is explained by

stating that as long as the direction of the flow is toward the sur-

face the dynamic pressure of its impulse is exerted upon it, but

when the water flows backward away from the surface, the

dynamic pressure due to both impulse and reaction is then

exerted upon it. The sum of these is

P=F +F=2W- = 4wa
g 2

which agrees with the results experimentally obtained.

An experiment by Morosi * shows clearly that the dynamic

pressure against a surface may be increased still further by the

device shown in Fig. 1536, where the stream is made to perform
two complete reversals upon the surface. He found that in this

case the value of the dynamic pressure was 3.32 times as great

as that against a plane, for P =
3.32 F, whereas theoretically the

3.32 should be 4. In this case, as in those preceding, the water in

passing over the surface loses energy in friction and foam, so that

* Ruhlman's Hydromechanik (Hannover, 1879), p. 586.
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it- velocity is diminished, and it should hence be expected that

the experimental values of the dynamic pr< .vould lx

than the theoretic values, as in general they are

found to be.

While the experiments here briefly described

thoroughly confirm the results of theory, they
further show it is the change in direction of the

velocity when in contact with the surface which

produces the dynamic pressure. If the stream

strikes normally against a plane, the direction of its velocity is

changed 90, and this is the same as the entire destruction of

the velocity in its original direction, so that the dynamic pres-

sure P should agree with the impulse F. This important princi-

ple of change in direction will be theoretically exemplified later.

The dynamic pressure which is produced by the direct reaction

of a stream of water when issuing from a vertical orifice in the

side of a vessel was measured 1

by Ewart with

the apparatus shown in Fig. 153c, which will

be readily understood without a detailed de-

scription. The discussion of these experi-

ments made by Weisbach * shows that the

measured values of P were from 2 to 4 per-

cent less than the theoretic value F as given

by (153), so that in this case, also, theory and

observation are in accordance.

An experiment by Unwin,f illustrated in Fig. 153</, is very

interesting, as it perhaps explains more clearly than formula (152)

why it is that the dynamic pressure

due to impulse is double the static

pressure. Two vessels having con-

verging tubes of equal size were

placed so that the jet from A was

directed exactly into B. The head in

A was kept uniform at 2oJ inches, Fig. 1534.

in. I53c,

* Theoretical Mechanics, Coxe's translation, vol. i, p. 1004.

t Encyclopedia Britannica, pth Edition, vol. 12, p. 467.
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when it was found that the water in B continued to rise until a

head of 18 inches was reached. All the water admitted into A
was thus lifted in B by the impulse of the jet, with a loss of 2 \

inches of head, which was caused by foam and friction. If

such losses could be entirely avoided, the water in B might
be raised to the same level as that in A. In the case shown in

the figure where the water overflows from B, the impulse of the

jet has not only to overcome the static pressure due to the

head h, but also to furnish the dynamic pressure equivalent to

a second head h in order to raise the water through that height.

But the level in B can never rise higher than in A
t
for the

velocity-head of the jet cannot be greater than that of the static

head which generates it.

Prob. 153. Accepting as an experimental fact that the force of impulse

or reaction is double the static pressure, show that the theoretic velocity

of flow is V'

2gh.

ART. 154. SURFACES AT REST

Let a jet of water whose cross-section is a impinge in perma-
nent flow with the uniform velocity v upon a surface at rest. Let

the surface be smooth, so that no resisting force of friction exists,

and let the stream be prevented from spreading laterally. The

water then passes over the surface, and leaves it with the original

velocity v, producing upon it a dynamic pressure whose value

depends upon its change of direction. At B in Fig. 1540 the

stream is deflected normal to its original direction, and at D
a complete reversal is effected. Let 6 be the angle between the

initial and final directions, as shown. It is required to determine

the dynamic pressure exerted upon the surface in the same direc-

tion as that of the jet. In the above figures, as in those that follow,

the stream is supposed to lie in a horizontal plane^ so that no
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acceleration or retardation of its velocity will be produced l>\

the action of gravity.

The stream entering upon the surface exerts its impul
in the same direction as that of its motion

; leaving the surf

it exerts its reaction F in

opposite direction to that

of its motion. Let P be

the dynamic pressure thus

produced in the direction

of the initial motion, F\

the component of the re-

action F in the same direc-

tion. Then

and inserting for F its value as given by (152),

P = (i-cos0)W
v-

(154),
6

which is the formula for the dynamic pressure in the direction

of the impinging jet. If in this 6 = o, the stream glides along

the surface without changing its direction, and P becomes zero
;.

if is 90, the resulting dynamic pressure is

P-F-W]
and if becomes 180, a complete reversal of direction is obtained r

and the resulting dynamic pressure that is exerted by the jet

against the surface is

P = 2p = 2w-
g

These theoretic conclusions agree with the experimental results

described in the last article. In the deduction of (154) i the angle

has been regarded as less than 90, but the same formula results

if be considered greater than 90, since then the sign of the

reaction F\ is positive.

The resultant dynamic pressure exerted upon the surface is

found by combining by the parallelogram of forces the impulse F
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and the equal reaction F. In Fig. 1546 it is seen that this resul-

tant bisects the angle 180 0, and that its value is

P f = 2F cosj(i8o
-

0)
= 2 sini# W-

6

It is usually, however, more important to ascertain the pressure

in a given direction than the resultant. This can be found by

taking the component of the resultant in that

\ direction, or by taking the algebraic sum of

the components of the initial impulse and the

/ final reaction.

To find the dynamic pressure P in a di-

rection which makes an angle a with the

entering and the angle 6 with the departing

stream, the components in that direction are

Pl
= F cosa P2

= -F cos0

and the algebraic sum of these two components is

P = F (cosa
-

cose)
=

(cosa
-

cos<9)W -
(154) 2

o

This becomes equal to F when a = o and = 90, as at B in

Fig. 1540, and also when a = 90 and 6 = 180. When a = o

and = 180 the entering and departing streams are parallel, as

at D in Fig. 154a, so that the value of JP is 2F, which in this case

is the same as the resultant pressure.

The formulas here deduced are entirely independent of the form

of the surface, and of the angle with which the jet enters upon it.

It is clear, however, if, as in the planes in Fig. 154a, this angle is

such as to allow shock to occur, that foam and changes in cross-sec-

tion may result which will cause energy to be dissipated in heat.

These losses will diminish the velocity v and decrease the theoretic

dynamic pressure. These effects cannot be formulated, but it is a

general principle, which is confirmed by experiment, that they may
be largely avoided by allowing the jet to impinge tangentially upon
the surface.

In all the foregoing formulas the weight W which impinges upon
the surface per second is the same as that which issues from the orifice

or nozzle that supplies the stream, or

W = wq = wav



Immersed Bodies. Art. 166 407

To find W it is hence necessary to use the methods of the preceding

chapters to determine either the discharge q or the mean velocity v.

Prob. 154. If F is 10 pounds, a = 0, and = 60, show that the pres-

sure parallel to the direction of the jet is 5 pounds, that the pressure normal

to that direction is 8.66 pounds, and that the resultant dynamic pressure is

10 pounds.

ART. 155. IMMERSED BODIES

When a body is immersed in a flowing stream, or when it is

moved in still water, so that filaments are caused to change their

direction, a dynamic pressure is exerted by the stream or overcome

Fig. 155.

by the body. It is to be inferred from what has preceded that

the dynamic pressure in the direction of the motion is proportional

to the force of impulse of a stream which has a cross-section equal

to that of the body, or
2

in which m is a number depending upon the length and shape of

the immersed portion, and whose value is 2 for a jet impinging

normally upon a plane.

Experiments made upon small plates held normally to the

direction of the flow show that the value of m lies between 1.25

and 1.75, the best determinations being near 1.4 and 1.5. It is

to be expected that the dynamic pressure on a plate in a stream

would be less than that due to the impulse of a jet of the same

cross-section, as the filaments of water near the outer edges are

crowded sideways in the latter case and hence do not impinge

with full normal effect, and the above results confirm this sup-

position. The few experiments on record were made with small

plates, mostly less than 2 square feet in area, and they seem to

indicate that the value of the coefficient m is greater for large

surfaces than for small ones. /
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The determination of the dynamic pressure upon the end of

an immersed cylinder or prism is difficult because of the resisting

friction of the sides
;
but it is well ascertained to be less than that

upon a plane of the same area, and within certain limits to de-

crease with the length. For a conical or wedge-shaped body the

dynamic pressure is less than that upon the cylinder, and it is

found that its intensity is much modified by the shape of the rear

surface of the body.

When a body is so shaped as to gradually deflect the filaments

of water in front, and to allow them to gradually close in again

upon the rear, the impulse of the front filaments upon the body
is balanced by the reaction of those in the rear, so that the resul-

tant dynamic pressure is zero. The forms of boats and ships

should be made so as to obtain this result as nearly as possible,

and then the propelling force has only to overcome the frictional

resistance of the surface upon the water. A body so shaped is

said to have a "fair form" (Art. 183).

The dynamic pressure produced by the impulse of ocean

waves striking upon piers or lighthouses is often very great.

The experiments of Stevenson on Skerryvore Island, where the

waves probably acted with greater force than usual, showed that

during the summer months the mean dynamic pressure per square

foot was about 600 pounds, and during the winter months about

2100 pounds, the maximum observed value being 6100 pounds*
At the Bell Rock lighthouse the greatest value observed was

about 3000 pounds per square foot. The observations were made

by allowing the waves to impinge upon a circular plate about 6

inches in diameter, and the pressure produced was registered by
the compression of a spring. Such high unit-pressures do not

probably act upon large areas of masonry which are exposed to

wave action.*

Prob. 155. Compute the probable dynamic pressure upon a surface

i foot square when immersed in a current whose velocity is 9 feet per second,

the direction of the current being normal to the surface.

*
Cooper on Ocean Waves, in Transactions American Society Civil

Engineers, 1896, vol. 36, p. 150.



Curved Pipes and Channels. Art. 156 lu'.i

ART. 156. CURVED PIPES AND CHANN

The dynamic pressures discussed in the preceding article

have been those caused by jets, or isolated streams, of water.

There is now to be considered the case of dynamic pressures
caused by streams flowing in pipes, conduits, or channels of any
kind

;
these are sometimes called limited or bounded streams,

the boundary being the surface whose cross-section is the wetted

perimeter. When such a stream is straight and of uniform sec-

tion, and all its filaments move with the same velocity v, the im-

pulse, or the pressure which it can produce, is the quantity F
given by the general expression in Art. 152

;
under these conditions

it exerts no dynamic pressure, but if a body be immersed and

held stationary, pressure is produced upon it. If its direction

changes in an elbow or bend, pressure upon the bounding surface

is produced; if its cross-section increases or decreases, pressure

is developed or absorbed.

The resultant dynamic pressure P' upon a curved pipe which

runs full of water with the uniform velocity v depends upon the

angle 6 between the initial and final directions, and must be the

same as that produced upon a surface by an impinging jet which

passes over it without change in velocity. The formula of Art.

154 then directly applies, and

o

if = o, there is no bend, and P' = o; if = 180, the direc-

tion of flow is reversed, and P' = 2p. If the direction is twice

reversed, as at C in Fig. 156a, the value of 6 is 360, and the re-
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sultant is the initial impulse F minus the final reaction F, or simply
zero

;
in this case, however, there may be a couple which tends

to twist the pipe, unless the impulse and reaction lie in the same

straight line.

The dynamic pressure developed in a unit of length of the curve

will now be found. Let the pipe at A in Fig. 156a have the length

8/, and let be nearly o, so that its value is the elementary angle
BO. Then in the above formula Pr

becomes the elementary radial

pressure BPJ} and

Now since BO = U/R, where R is the radius of the curve, the dynamic

pressure developed in the distance U is FSl/R, and that for a unit of

length is F/R. Accordingly, by Art. 153, this pressure is

p _F_ 2wa p2

R R 2g

The unit-pressure p' is found by dividing PI by a, and the correspond-

ing head h^ is found by dividing p' by w ;
hence

. , 2 W V
2

, , 2 VZ

p =-- and h\ = --R 2g R2g

are the values for one unit of length of the curve. The dynamic
pressure-head hi is developed in every unit of length of the pipe. It

is not known how these influence the static pressure or how they affect

piezometers. Nor is it known whether they combine so that the dy-
namic pressure becomes greater with the distance from the beginning
of the curve. Undoubtedly, however, a part of hi is expended in

causing cross-currents whereby impact results and some of the static

head is lost. This loss should be proportional to h and proportional
to the length / of the curve, or, if d is the diameter of the pipe,

.

R d2g d2g

in which the curvature factor /! depends upon the ratio R/d. This

investigation appears to indicate that pipes of the same diameter and
of different curvatures give the same loss of head, if the central angle
is the same

; but, as seen in Art. 91, certain experiments seem to point
to the conclusion that the loss per linear unit is greatest in the pipe

having the longest radius.
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Fig. 1566.

The same reasoning applies approximately to the curves of

conduits, canals, and rivers. In any length / there exists a radial

dynamic pressure P\, acting toward the outer bank and cau

currents in that direction, which, in connection with the great < r

velocity that naturally there exists, tends to deepen the chaniul

on that side. This may help to explain the reason why rivers run

in winding courses. At first the curve may be slight, but the

radial flow due to the dynamic

pressure causes the outer bank

to scour away; this increases

the velocity v% and decreases Vi

(Fig. 1566), and this in turn

hastens the scour on the outer

and allows material to be de-

posited on the inner side. Thus

the process continues until a

state of permanency is reached,

and then the existing forces tend to maintain the curve,

cross-currents which the radial pressure produces have been

actually seen in experiments devised by Thomson,* and it is

found that they move in the manner shown in the above figure,

the motion toward the outer bank being in the upper part of the

section, while along the wetted perimeter they flow toward the

inner bank. When the slope is small and the mean velocity

low, the influence of the cross-currents is relatively greater than

for higher slopes, and this is probably one of the reasons why
the sharpest curves are found in streams of slight slope. Per-

haps another reason for this is that at very low velocities the law

of flow is different, the head varying as the first power of the

velocity (Art. 124).

The elevation of the water on the outer bank of a bend is

higher than on the inner. This is only a partial consequence of

the radial dynamic pressure, as in straight streams it is also seen

that the water surface is curved, the highest elevation being where

the velocity is greatest. In this case cross-currents are also ob-

The

*
Proceedings Royal Society of London, 1878, p. 356.
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served which move near the surface toward the center of the

stream, and near the bottom toward the banks, their motion

being due to the disturbance of the static pressure consequent

upon the varying water level.

Prob. 156. The mean velocity in a pipe is 9 feet per second. If it be

laid on a curve of 3 feet radius, show that the dynamic pressure-head for

each foot in length of the pipe is 0.84 feet. If the radius of the curve be 6

feet, what is the dynamic pressure-head? What is the dynamic pressure-

head for each case when the mean velocity is 3 feet per second ?

ART. 157. WATER HAMMER IN PIPES

When a valve in a pipe is closed while the water is flowing,

the velocity of the water is retarded as the valve descends, and

thus a dynamic pressure is produced. When the valve is closed

quickly, this dynamic pressure may be much greater than that due

to the static pressure, and it is then called
"
water hammer" or

''water ram." Pipes have often been known to burst under this

cause, and hence the determination of the maximum dynamic

pressure of the water hammer is a matter of importance. Fig.

157a illustrates the phenomena of water hammer for the closing

of a valve at the end of a pipe where the water issues through a

nozzle. At the entrance there is supposed to be a gage which

registers the static unit-pressure pi while the flow is in progress,

and the static unit-pressure po when there is no flow. The ab-

scissas represent time, and at B the valve begins to close. After

a short interval of time BC the gage registers the unit-pressure

Cc'j after another short interval the unit-pressure has decreased
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to /)</, and a series of oscillations follows until finally the dis-

turbance ceases. A diagram of this kind may be autographic-ally

drawn by suitable mechanism connected with the pressure gage,

and such were made in the experiments conducted by Carpenter.*

as also in those of Fletcher, f

Let p represent the excess of maximum dynamic unit-pressure

over the static unit-pressure when there is no flow
;

that is, the

difference of the ordinates Cc and Ee. This is the excess unit-

pressure due to the water hammer, and it is required to determine

an expression for its value. It is first to be noted that the actual

dynamic unit-pressure produced by the retardation of the veloc-

ity is the difference of the ordinates Cc and Bb and this difference

is p + po pi. The dynamic pressure on the area a of the cross-

section of the pipe is then (p -f- po p\)a, and for brevity this

may be represented by P. If this pressure be regarded as

varying uniformly from o up to P during the time / in which the

valve closes, its mean value is P and its total impulse during

this time is \ Pi. If / be the length of the pipe, w the weight of

a cubic unit of water, and v the velocity during the flow, the total

weight of water in the pipe is wal and its impulse is wal -

v/g.

Equating these expressions of the impulse there is found P = 2

walv/gt, and replacing P by its value, there results

p =^v+ Pl -p Q (157)!

as the excess dynamic unit-pressure due to closing the valve in

the time /. This formula, having been deduced without consid-

ering the fact that time is required for the transmission of -stress

through water, cannot be regarded as applicable to all cases.

In Art. 5 it was shown that the velocity with which any dis-

turbance is propagated through water is about 4670 feet per

second, and this velocity may be represented by u. Now let the

pipe of length / have an open valve at the end, and let the water

be flowing through every section with the velocity v. Then the

* Transactions American Society of Mechanical Engineers, 1894, vol. 15.

t Engineering News, 1898, vol. 39, p. 323.
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time l/u must elapse after the valve begins to close before the

velocity begins to be checked at the upper end of the pipe, and

the further time of l/u must elapse before the pressure due to this

retardation can be transmitted back to the valve. The total

time 2// is then required before the gage at the valve can indi-

cate the pressure due to the retardation of the velocity in the

length /. Hence, if the time in which the valve closes be equal
to or less than 2//, the time / in the above formula is to be re-

placed by 2//#, and thus

p (157) 2

g

is the maximum excess dynamic unit-pressure that can occur in

the pipe. This depends upon the velocity of the water and upon
the initial and final static pressures.

The subject of water hammer in pipes is one of the most diffi-

cult in hydromechanics, and the above investigation cannot be

regarded as final. Formula (157) i is probably correct only for

a certain law of valve closing. Formula (157)2, however, is cer-

tainly correct, for it may be proved by other methods, one of

which is as follows: When the water is in motion, the kinetic

energy in a length SI at the gage is waBl - v
2
/2g ;

when it is brought
to rest under the unit-stress S, its stress energy is aU S2

/2E, if

E be the modulus of elasticity of the water.* Equating these

expressions, and substituting p -f pQ pi for S, there results for

the excess dynamic unit-pressure

o '

and this reduces to (157) 2 if E be replaced by wu2
/g, which is

its value according to formula (5).

When v is in feet per second, and pQ , pi, and p are in pounds

per square inch, these formulas become

=
0.027 (Ift} v + pi-po p = 6$v+ pi-po (157) 8

the first of which is to be used when t is greater than 0.0004 2S/

and the second when / is equal to or less than it, / being in feet.

* Merriman's Mechanics of Materials (New York, 1911), p. 306.
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From the first of these formulas the value of /, when p -
o, is

found to be /.

/
=
0.027

-
Po-Pi

which is the time of valve closing in order that there may be n>

water hammer. For example, let po be 83 and pi be 58 pounds

per square inch, / be 1903 feet, and v be 5 feet per second, then /

is 10.3 seconds. To prevent the effects of water hammer, it is

customary to arrange valves so that they cannot be closed very

quickly, and the last formula furnishes the means of estimating

the time required in order that no excess of dynamic pressure

over the static pressure pQ may occur.

The elaborate experiments of Joukowsky at Moscow in 1898
*

have fully confirmed the truth of formula (157)2 . Horizontal

pipes of 2, 4, and 6 inches diameter, with lengths of 2494, 1050,

and 1066 feet, were used, and the valve at the end was closed in

0.03 seconds. Ten autographic recording gages were placed along

the length of a pipe, and it was found that substantially the same

dynamic pressure was produced at each, but that the time length

of a wave was the shorter the farther the distance of a gage from

the valve
;

this wave length is shown in the above figure by the

distance BD. The following is a comparison of the observed

For the 4-inch Pipe
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concludes that, owing to the influence of the metal of the pipes,

the velocity u with which stress is transmitted in the water is

about 4200 instead of 4670 feet per second. This conclusion

may be applied in practice by using 592; instead of 632; in (157) 3 .

Fig. 157<z shows the waves of pressure for a case where the

valve is closed in a time greater than ilju. Fi^.
1576 shows

Fig. 1576.

the oscillations for two cases, the broken line being for/ =
0.7

seconds and the full line for / = 0.3 seconds, both cases referring

to a pipe for which the time 2l/u is about 0.6 seconds. It is seen

that the crests of the waves are flat when the time of closing the

valve is less than zl/u, and diagrams of this kind only were drawn

"in the experiments of Joukowsky.

In computing the thickness of water pipes it is customary to

add 100 pounds per square inch to the static pressure in order to

allow for the influence of water hammer. This is equivalent, if

pi is zero, to making p Q + 100 equivalent to 632 ;
when v is 3 feet

per second, then p Q is 89 pounds per square inch. Since these

values of v and p are larger than the usual ones for a city water

supply, the customary practice is on the safe side for this case,

but it would not give sufficient security for the high velocities

often used in pipe lines for power plants. When a wave of dy-
namic pressure travels toward a dead end of a pipe, the water

hammer at that end may be two or three times as great as the

maximum pressure given by the formula.

In the case of a water power plant supplied from a pipe or

long penstock, a "surge tank" *
may be placed near the lower end

in order to prevent sudden changes in pressure due to sudden

* Transactions American Society of Mechanical Engineers, 1908, p. 443.
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changes in load on the wheels and the consequent fluctuutim.

velocity within the feeding pipe.

Prob. 157. The pressure -lu-ad at the entrance to a nozzle is 400 feet

when there is no flow and 200 feet when the water is (lowing. Tin- pipe is

1500 feet long and the velocity in it is 4 feet per second when the nozzle

is in operation. Compute the excess dynamic pressure when the valvv U

closed in 0.7 seconds and also when it is closed in 0.3 seconds.

ART. 158. MOVING VANES

A vane is a plane or curved surface which moves in a given

direction under the dynamic pressure exerted by an impinging

jet or stream. The direction of the motion of the vane depends

upon the conditions of its construction
;

for example, the vanes

of a water wheel can only move in a circumference around its axis.

The simplest case for consideration, however, is that where the

motion is in a straight line, and this alone will be considered in

this article. The plane of the stream and vane is to be taken as

horizontal, so that no direct action of gravity can influence the

action of the jet.

Let a jet with the velocity v impinge upon a vane which moves

in the same direction with the velocity , and let the velocity of

the jet relative to the surface at the point

of exit make an angle @ with the reverse

direction of u, as shown in Fig. 158a.

The velocity of the stream relative to the

surface is v - u, and the dynamic pres-

sure is the same as if the surface were at

rest and the stream moving with the ab-

solute velocity v - u. Hence formula (154) i directly applies,

replacing v by v - u and by 180 -
ft, and the dynamic p

sure is

P =
(i + cos/3)W v

g

In this formula W is not the weight of the vjater which issues from

the nozzle, but that which strikes and leaves the vane, or W = wa

(v u) ;
for under the condition here supposed the vane moves
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continually away from the nozzle, and hence does not receive

all the water which it delivers.

Another method of deducing the last equation is as follows :

At the point of exit let lines be drawn representing the velocities

v u and u; then, completing the parallelogram, the line Vi

is the absolute velocity of the departing jet (Art. 28). Let be

the angle which vi makes with the direction of u, and ft as before

the angle between v u and the reverse direction of u. Then

the dynamic pressure on the vane is that due to the absolute

impulse of the entering and departing streams: the former of

these is W -

v/g and the latter is W -

v\ cos0/g. Hence the result-

ant dynamic pressure in the direction of the motion of- the vane

is the difference of these impulses, or

p = w v ~

But from the triangle between vi and u

Vi cos# =u (v u) cos/3

Inserting this, the value of the dynamic pressure is

P =
(i + cos/3)W

T^^
g

which is the same as that found before. If ft = 180, there is no

pressure, and if ft = o, the stream is completely reversed, and

P attains its maximum value. The dynamic pressure may be

exerted with different intensities upon different parts of the vane,

but its total value in the direction of the motion is that given

by the formula.

Usually the direction of the motion is not the same as that of

the jet. This case is shown in Fig. 1586, where the arrow marked
F designates the direction of the impinging jet, and that marked
P the direction of the motion of the vane, being the angle be-

tween them. The jet having the velocity v impinges upon the

vane at A, and in passing over it exerts a dynamic pressure P
which causes it to move with the velocity u. At A let lines be

drawn representing the intensities and directions of v and u, and

let the parallelogram of velocities be formed as shown
;

the line
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V then represents the velocity of the water relative to the vane

at A. The stream passes over the surface and leaves it at B
with the same relative velocity K, if not retarded by friction or

foam. At B let lines be drawn

to represent u and V, and let

yS be the angle which V makes

with the reverse direction of u
;

let the parallelogram be com-

pleted, giving Vi for the abso-

lute velocity of the departing

water, and let be the angle

which it makes with u. The

total pressure in the direction

of the motion is now to be regarded as that caused by the com-

ponents in that direction of the initial and the final impulse of

the water. The impulse of the stream before striking the vane

is W -

v/g and its component in the direction of the motion is

W v cosa/g. The impulse of the stream as it leaves the vane

is W -

vi/g and its component in the direction of the motion is

W -
vi cos0/g. The difference of these components is the result-

ant dynamic pressure in the given direction, or

(ISS)

This is a general formula for the dynamic pressure in any given

direction upon a vane moving in a straight line, if a and 6 be the

angles between that direction and those of v and VL If the surface

be at rest, v and v\ are equal and the formula reduces to (154)2 .

If it be required to find the numerical value of P, the given

data are the velocities v and u and the angles and . The term

vi tos0 is hence to be expressed in terms of these quantities. From

the triangle at B between vi and u, there is found

Vi cos# = u V cos/3

and substituting this, the formula becomes

P _W v cos u+V cosff
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which is often a more convenient form for discussion. The

value of V is found from the triangle at A between u and
z>,

thus: 2

and hence the dynamic pressure P is fully determined in terms of

the given data.

In order that the stream may enter tangentially upon the vane,

and thus prevent foam, the curve of the vane at A snould be tan-

gent to the direction of V. This direction can be found by ex-

pressing the angle <f>
in terms of the given angle a. Thus from

the relation between the sides and angles of the triangle included

between u, v, and V there is found

sin ((#> )/sin</>
= u/v

which is easily reduced to the form

cot$ = cota--
z>sin

from which < can be computed when u, v, and are given.

For example, if u be equal to Jz>, and if a be 30, then cot</> is 0.732,

whence the angle $ should be 53}, in order that the jet may enter

without impact. If the angle made by the vane with the direc-

tion of motion be greater or less than this value, some loss due to

impact will result at the given speed.

Prob. 158. Given u = 86.6 and v = 100.0 feet per second, and a = 30.
What should be the value of the angle ^ in order that no loss by impact

may occur ? Draw the parallelogram showing the velocities u, v, and V.

ART. 159. WORK DERIVED FROM MOVING VANES

The work imparted to a moving vane by the energy of the

impinging water is equal, to the product of the dynamic pressure

P, which is exerted in the direction of the motion and the space

through which it moves. If u be the space described in one

second, or the velocity of the vane, the work per second is

k = Pu

This expression is now to be discussed in order to determine the

value of u which makes k a maximum.
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When the vane moves in a straight line in the same dim ti>n

as the impinging jet and the water enters it tangentially, as shown
in Fig. 1546, the work imparted is found by inserting for /

value from (154)i. If a be the area of the cross-section of UK

and w the weight of a cubic unit of water, the weight W is wa

(v u), and then

k = (i + cos/9)W -" =
(! + cos/9) wa

8 g

The value of u which renders k a maximum is obtained by
equating to zero the derivative of k with respect to u, or

g

from which the value of u is %v, and accordingly

is the maximum work that can be done by the vane in one

second. The theoretic energy of the impinging jet is

and the efficiency of the vane is the ratio of the effective work

of the vane to the theoretic energy of the water, or

If /3 = 180, the jet glides along the vane without producing work

and e = o; if ft 90, the water departs from the vane normal

to its original direction and e = o
8
y ;

if = o, the direction of the

stream is reversed and e =
\ ?

It appears from the above that the greatest efficiency which can

be obtained by a vane moving in a straight line under the impulse

of a jet of water is ^f ;
that is, the effective work is only about 59 per-

cent of the theoretic energy attainable. This is due to two causes :

first, the quantity of water which reaches and leaves the vane per second

is less than that furnished by the nozzle or mouthpiece from which tin-

water issues; and, secondly, the water leaving the vane still has an

absolute velocity of %v; A vane moving in a straight line is therefore

a poor arrangement for utilizing energy, and it will also be seen upon
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reflection that it would be impossible to construct a motor in which a

vane would move continually in the same direction away from a fixed

nozzle. The above discussion therefore gives but a rude approxima-
tion to the results obtainable under practical conditions. It shows

truly, however, that the efficiency of a jet which is deflected normally
from its path is but one-half of that obtainable when a complete
reversal of direction is made.

Water wheels which act under the impulse of a jet consist of

a series of vanes arranged around a circumference which by the

motion are brought in succession before the jet. In this case the

quantity of water which leaves the wheel per second is the same

as that which enters it, so that W does not depend on the velocity

of the vanes, as in the preceding case, but is a constant whose

value is wq, where q is the quantity furnished per second. A close

estimate of the efficiency of a series of such vanes can be made

by considering a single vane and taking W as a constant. The

water is supposed to impinge tangentially and the vane to move
in the same line of direction as the jet (Fig. 1580). Then the

work which is imparted in one second by the water to the mov-

ing vane is / x

=
(l + cos/3)TF^*^

g

This becomes zero when u = o or when u =
v, and it is a maxi-

mum when u =
%v, or when the vane moves with one-half the

velocity of the jet. Inserting this value of u,

and, dividing this by the theoretic energy of the jet, the effi-

ciency of the vane is found to be

e = i(i+ cos/3)

When /3 = 180, the jet merely glides along the surface without

performing work and e = o; when ft = 90, the jet is deflected

normally to the direction of the motion and e = f ;
when ft = o,

a complete reversal of direction is obtained and the efficiency

attains its maximum value e = i.
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These conclusions apply closely to the vanes of a water \\ lud
which are so shaped that the water enters upon them tangent ially

in the direction of the motion. If the vanes are plane radial

surfaces, as in simple paddle wheels, the water passes away nor-

mally to the circumference, and the highest obtainable efficiency

is about 50 percent. If the vanes are curved backward, the effi-

ciency becomes greater, and, neglecting losses in impact and fric-

tion, it might be made nearly unity, and the entire energy of the

stream be realized, if the water could both enter and leave the

vanes in a direction tangential to the circumference. The in-

vestigation shows that this is due to the fact that the water leaves

the vanes without velocity; for, as the advantageous velocity

of the vane- is \v, the water upon its surface has the relative

velocity v \v = \v ; then, if ft = o, its absolute velocity as

it leaves the vane is \v \v = o. If the velocity of the vanes

is less or greater than half the velocity of the jet, the efficiency

is lessened, although slight variations from the advantageous

velocity do not practically influence the value of e.

Prob 159. A nozzle 0.125 feet in diameter, whose coefficient of dis-

charge is 0.95, delivers water under a head of 82 feet against a series of small

vanes on a circumference whose diameter is 18.5 feet. Find the most ad-

vantageous velocity of revolution of the circumference.

ART. 160. REVOLVING VANES

When vanes are attached to an axis around which they move,

as is the case in water wheels, the dynamic pressure which is

effective in causing the motion is that tangential to the circum-

ferences of revolution
;

or at any given point this effective pres-

sure is normal to a radius drawn from the point to the axis. In

Fig. 160 are shown two cases of a rotating vane
;

in the first the

water passes outward or away from the axis, and in the second it

passes inward or toward the axis. The reasoning, however, is

general and will apply to both cases. At A, where the jet enters

upon the vane, let v be its absolute velocity, V its velocity rela-

tive to the vane, and u the velocity of the point A ;
draw u normal

to the radius r and construct the parallelogram of velocities as
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shown, a being the angle between the directions of u and 0, and

<#> that between u and V. At B, where the water leaves the vane,

let u\ be the velocity of that point normal to the radius ri, and FI

the velocity of the water relative to the vane
;
then constructing

Fig. 160.

the parallelogram, the resultant of u\ and V\ is z>i, the absolute

velocity of the departing water. Let fi be the angle between V\

and the reverse direction of u\, and 6 be the angle between the

directions of v\ and u\.

The total dynamic pressure exerted in the direction of the

motion will depend upon the values of the impulse of the entering

and departing streams. The absolute impulse of the water before

entering is W v/g, and that of the water after leaving is W vi/g,

Let the components of these in the directions of the motion of

the vane at entrance and departure be designated by P and PI ;

then

8 S

These, however, cannot be subtracted to give the resultant dy-

namic pressure, as was done in the case of motion in a straight

line, because their directions are not parallel, and the velocities

of their points of application are not equal. The resultant dy-

namic pressure is not important in cases of this kind, but the

above values will prove useful in the next article in investigating

the work that can be delivered by the vane.
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If w be the number of revolutions around the axis in one sec-

ond, the velocities u and u\ are

u = 27rrn u\ = 2irr\n

and accordingly the relation obtains

u\/u r\/r or u\r = ur\

which shows that the velocities of the points of entrance and exit

are directly proportional to their distances from the axis. If r

and r\ are infinity, u equals u\ and the case is that of motion in

a straight line as discussed in Art. 158.

The relative velocities V\ and V are connected with the veloc-

ities of rotation u\ and u by a simple relation. To deduo

imagine an observer standing on the outward-flow vane and

moving with it
;
he sees a particle of weight w at A which to him

appears to have the velocity V, while the same particle at B
appears to have the velocity Vi ;

the difference of their kinetic

energies, or w(Vi
2 - V2

)/2g, is the apparent gain of the wheel-

energy. Again, consider an observer standing on the earth and

looking down upon the vane
;
from his point of view the energy

gained is w(ui
z u2

)/2g. Now these two expressions for the

gain of the wheel in energy must be equal, or

VS-V^uS-u2
i inl-

and this is the formula by which V\ is to be computed when I"

and the velocities of rotation are known. The same reasoning

applies to the inward-flow vane by using the word
"
loss

"
instead

of
"
gain," and the same formula results.

The given data for a revolving vane are the angles < and $,

the radii r and r\, the velocity v, the number of revolutions per

second, and the weight of water delivered to the vane per second.

The value of v cosa, and hence that of P\, is immediately known.

From the speed of revolution the velocities u and u\ are found.

The relative velocity V is, from the triangle between u and t>,

V = v sina/sin<

and by (160) the relative velocity V\ is then found from
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Lastly, the value of v\ cos#, from the triangle between HI and

**> is
vi cos# = ui Vi cos/3

and accordingly the values of the dynamic pressures P and PI are

fully determined. Numerical values of these, however, are never

needed, but the work due to them is of much importance, as will

be explained in the next article.

Prob. 160. Given r = 2 feet
, fi = 3 feet,

= 45, $ = 90, v = 100

feet per second, and n = 6 revolutions per second. Compute the velocities

u, MI, V, and V\.

ART. 161. WORK DERIVED FROM REVOLVING VANES

The investigation in Art. 159 on the work and efficiency of

a revolving vane supposes that all its points move with the same

velocity, and that the water enters upon it in the same direction

as that of its motion, or that a = o. This cannot in general be

the case in water motors, as then the jet would be tangential to

the circumference and no water could enter. To consider the

subject further the reasoning of the last article will be continued,

and, using the same notation, it will be plain that the work of a

series of vanes arranged around a wheel may be regarded as that

due to the impulse of the entering stream in the direction of the

motion around the axis minus that due to the impulse of the de-

parting stream in the same direction, or

k = Pu-P1u1

Here P and PI are the pressures due to the impulse at A and
B (Fig. 160), and inserting their values as found,

g

This is a general formula applicable to the work of all wheels of

outward or inward flow, and it is seen that the useful work k

consists of two parts, one due to the entering and the other to

the departing stream.

Another general expression for the work of a series of vanes

may be established as follows : Let v and vi be the absolute veloc-
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ities of the entering and departing water; the theoretic energy
of this water is W v*/2g, and when it leaves the wheel it still

has the energy W -

Vi
2
/2g. Neglecting losses of energy in impact

and friction the work that can be derived from the wheel is

7, 2

(161),

This is a formula of equal generality with the preceding, and like

it is applicable to all cases of the conversion of energy into work

by means of impulse or reaction. In both formulas, however,

the plane of the vane is supposed to be horizontal, so that no fall

occurs between the points of entrance and exit.

Formula (160) may be demonstrated in another way by

equating the values of k in the preceding formulas
;
thus

uv cosa utfi cos0= \ (v
2

Vi
2
)

Now from the triangle at A between u and v

V
2 y2 _ U2

_j_ 2 uv COsa

and from the triangle at B between u\ and Vi

Vi
2 = Vi

2 U\+2 Utfi COS0

Inserting these values of v
2 and v

2 the equation reduces to

This shows that if i be greater than u, as in the outward-flow

vane, then Vi is greater than V
;

if u\ is less than u, as in an in-

ward-flow vane, then V\ is less than V.

Fig. 161a. Fig. 161ft.

The above principles will now be applied to the simple case

of an outward-flow wheel driven by a fixed nozzle, as in Fig. 161 a.



428 Chap. 12. Dynamic Pressure of Water

The wheel is so built that r = 2 feet, r
1 =

3 feet, a = 45, < = 90,
and ft = 30. The velocity of the water issuing from the nozzle

is v = 100 feet per second, and the discharge per second is 2.2

cubic feet. It is required to find the work of the wheel and the

efficiency when its speed is 337.5 revolutions per minute.

The theoretic work of the stream per second is the weight

delivered per second multiplied by its velocity-head, or

k = 62.5 X 2.2 X 0.01555 X ioo2 = 21 380 foot-pounds

which gives 38.9 theoretic horse-powers. The actual work of the

wheel, neglecting losses in foam and friction, can be computed
either from (161)i or (161) 2 . In order to use the first of these,

however, the velocities u, u\, Vi, and the angle must be found,

and to use the second, Vi must be found
;

in each case V and V\

must be determined.

The velocities u and u\ are found from the given speed of

5.625 revolutions per second, thus :

u =2 X3-i4i6X 2 X 5.625
=

70.71 feet per second;

HI = i J X 70.71
= 106.06 feet per second.

The relative velocity V at the point of entrance is found from

the triangle between V and v, which in this case is right-angled ;

V =
i) cos(< a)

= v cos 45
=

70.71 feet per second.

The relative velocity V\ at the point of exit is found from the

relation (160), which gives V\ = u\ = 106.06 feet per second.

And since i and V\ are equal, Vi bisects the angle between V\

and MI, and accordingly

= i(i8o-/3) = 75 degrees.

The value of the absolute velocity Vi then is

Vi
= 2 u\ cos# = 54.90 feet per second,

and Vi
2
/2g is the velocity-head lost in the escaping water.

The work of the wheel per second, computed either from (161 )i

or (161)2, is now found to be k = 14 934 foot-pounds or 27.2

horse-powers, and hence the efficiency, or the ratio of this work

to the theoretic work, is e = 0.699. Thus 30.1 percent of the
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energy of the water is lost, owing to the fact that the water leaves

the wheel with such a large absolute velocity.

In this example the speed given, 337.5 revolutions per minute,

is such that the direction of the relative velocity V is tangent to 'the

vane at the point of entrance. For any other speed this \\ill not be

the case, and thus work will be lost in shock and foam. It is observed

also that the approach angle is one-half of the entrance angle ^;
with this arrangement the velocities u and V are equal, as also //, and

V\. Had the angle /? been made smaller the efficiency of the wheel

would have been higher.

Prob. 161. Compute the power and efficiency for the above example

if the angle ft be 15 instead of 30. Explain why ft cannot be made very

small.

ART. 162. REVOLVING TUBES

The water which glides over a vane can never be under static

pressure, but when two vanes are placed near together and con-

nected so as to form a closed tube, there may exist in it static

pressure if the tube is filled. This is the condition in turbine

wheels, where a number of such tubes, or buckets, are placed

around an axis and water is forced through

them by the static pressure of a head. The

work in this case is done by the dynamic

pressure exactly as in vanes, but the existence

of the static pressure renders the investiga-

tion more difficult.

The simplest instance of a revolving tube

is that of an arm attached to a vessel rotat-

ing about a vertical axis, as in Fig. 162. It

was shown in Art. 29 that the water surface in

this case assumes the form of a paraboloid,

and if no discharge occurs, it is clear that the

static pressures at any two points B and A
are measured by the pressure-heads U\ and H reckoned upwards

to the parabolic curve, and, if the velocities of those points are

i and u, that uf _ u2 _ LHI H h

Fig. 162.



430 Chap. 12. Dynamic Pressure of Water

Now suppose an orifice to be opened in the end of the tube and the

flow to occur, while at the same time the revolution is continued.

The velocities FI and F diminish the pressure-heads so that the

piezometric line is no longer the parabola, but some curve repre-

sented by the lower broken line in the figure. Then, according

to the theorem of Art. 31, that pressure-head plus velocity-head

remains constant during steady flow, if no loss of energy occurs,

- = h (162)
2g 2g 2g 2g

in which HI and H are the heads due to the actual static pressures.

This is the theorem which gives the relation between pressure-

head, velocity-head, and rotation-head at any point of a revolving

tube or bucket. If the tube is only partly full, so that the flow

occurs along one side, like that of a stream upon a vane, then there

is no static pressure, and the formula becomes the same as (160).

An apparatus like Fig. 162, but having a number of arms from

which the flow issues, is called a reaction wheel, since the dynamic

pressure which causes the revolution is wholly due to the reaction

of the issuing water. To investigate it, the general formula (161) i

may be used. Making u = o, the work done upon the wheel by
the water is

UjDi COS# _

But since' there is no static pressure at the point B, the value

of FI is, from (162), or also from Art. 29,

F! =

The work that can be derived from the wheel now is

g

This becomes nothing when u\ =
o, or when #i

2 = 2gh cot2/3,

and by equating the first derivative to zero it is found that k

becomes a maximum when the velocity is given by

sin/9
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Inserting this advantageous velocity, the maximum work is

and therefore the efficiency of the reaction wheel is

e = i sin#

When ft = 00, both u\ and e become o, for then the direction of

the stream is normal to the circumference and no reaction can

occur in the direction of revolution. When ft = o, the efficiency

becomes unity, but the velocity u\ becomes infinity. In the

reaction wheel, therefore, high efficiency can only be secured by

making the direction of the issuing water directly opposite to that

of the revolution, and by having the speed very great. If ft =

19. 5 or sin ft = J, the advantageous velocity u\ becomes \/2//

and e becomes 0.67. The effect of friction of the water on the

sides of the revolving tube is not here considered, but this will

be done in Art. 172.

Prob. 162a. Compute the theoretic efficiency of the reaction wheel

when = 180, J3
= o, and MI = ^/2gh.

Prob. 1626. A reaction wheel has ft
= 30, r v

= 0.302 meters, and h

4.5 meters. Compute the most advantageous number of revolutions per

minute. If the quantity of water delivered to the wheel is 1600 liters per

minute, compute the power of the wheel in metric horse-powers and in kilo-

watts.

Prob. 162c. When / is in meters, v in meters per second, and p, pi t

and pQ are in kilograms per square centimeter, the formulas (157)., for water

hammer become

p = 0.0204 (///) v + />,
-

po p= 14-5 v + Pi
-

po

the first of which is to be used when / is greater than 0.0014047 and the second

when t is equal to or less than it, I being in meters.
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CHAPTER 13

WATER WHEELS

ART. 163. CONDITIONS OF HIGH EFFICIENCY

A hydraulic motor is an apparatus for utilizing the energy

of a waterfall. It generally consists of a wheel which is caused to

revolve either by the weight of water falling from a higher to a

lower level, or by the dynamic pressure due to the change in direc-

tion and velocity of a moving stream. When the water enters

at only one part of the circumference, the apparatus is called a

water wheel
;
when it enters around the entire circumference, it

is called a turbine. In this chapter and the next these two classes

of motors will be discussed in order to determine the conditions

which render them most efficient. Overshot wheels, which move

under the weight of water caught in their buckets, and undershot

wheels, which move under the impact of a flowing stream, are

forms that have been used for many centuries. Impulse wheels,

which owe their motion to a jet of water striking their vanes

with high velocity, were perfected in the eighteenth century.

The efficiency e of a motor ought, if possible, to be independent
of the amount of water used, or if not, it should be the greatest

when the water supply is low. This is very difficult to attain.

It should be noted, however, that it is not the mere variation in

the quantity of water which causes the efficiency to vary, but it

is the losses of head which are consequent thereon. For instance,

when water is low, gates must be lowered to diminish the area of

orifices, and this produces sudden changes of section which

diminish the effective head h. A complete theoretic expression

for the efficiency will hence not include W, the weight of water

supplied per second, but it should, if possible, include the losses

of energy or head which result when W varies. The actual effi-

ciency of a motor can only be determined by tests with the fric-
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tion brake (Art. 149) ; the theoretic efficiency, as deduced from

formulas like those of the last chapter, will as a rule be higher

than the actual, because it is impossible to formulate accurately

all the sources of loss. Nevertheless the deduction and discus-

sion of formulas for theoretic efficiency are very important for t In-

correct understanding and successful construction of all kinds

of hydraulic motors.

When a weight of water W falls in each second through the

height //, or when it is delivered with the velocity 0, its theoretic

energy per second is

K = Wh or K =W
2g

The actual work per second equals the theoretic energy minus

all the losses of energy. These losses may be divided into two

classes: first, those caused by the transformation of energy into

heat
;
and second, those due to the velocity vi with which the

water reaches the level of the tail race. The first class includes

losses in friction, losses in foam and eddies consequent upon sud-

den changes in cross-section or from allowing the entering water

to dash improperly against surfaces
;

let the loss of work due to

this be Wh', in which h
f

is the head lost by these causes. The

second loss is due merely to the fact that the departing water

carries away the energy W Vi
2
/2g. The work per second im-

parted by the water to the wheel then is

V J_

and dividing this by the theoretic energy the efficiency is,

(163)

in which v is the velocity due to the head //. This formula, al-

though very general, must be the basis of all discussions on the

theory of water wheels and motors. It shows that < can only

become unity when h' = o and Vi
= o, and accordingly the two

following fundamental conditions must be fulfilled in order to

secure high efficiency :
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1. The water must enter and pass through the wheel without

losing energy in friction and foam.

2. The water must reach the level of the tail race without ab-

solute velocity.

These two requirements are expressed in popular language by the

well-known maxim "the water should enter the wheel without

shock and leave without velocity .

' ' Here the word k '

shock
' ' means

that method of introducing the water upon the wheel which

produces foam and eddies.

The friction of the wheel upon its bearings is included in the lost

work when the power and efficiency are actually measured as described

in Art. 149. But as this is not a hydraulic loss it should not be in-

cluded in the lost work k' when discussing the wheel merely as a user

of water, as will be done in this chapter. The amount lost in shaft

and journal friction in good constructions may be estimated at 2

or 3 percent of the theoretic energy, so that in discussing the hydrau-

lic losses the maximum value of e will not be unity, but about 0.98

or 0.97. This will usually be rendered considerably smaller by the

friction of the wheel upon the air or water in which it moves, and

which will here not be regarded. The efficiency given by (163) is

called the hydraulic efficiency to distinguish it from the actual efficiency

as determined by the friction brake.

Prob. 163. A wheel using 70 cubic feet of water per minute under a head

of 12.4 feet has an efficiency of 63 percent. What effective horse-power

does it deliver ?

ART. 164. OVERSHOT WHEELS

In the overshot wheel the water acts largely by its weight.

Figure 164 shows an end view or vertical section, which so fully

illustrates its action that no detailed explanation is necessary.

The total fall from the surface of the water in the head race or

flume to the surface in the tail race is called h, and the weight of

water delivered per second to the wheel is called W. Then the

theoretic energy per second imparted to the wheel is Wh. It is

required to determine the conditions which will render the effec-

tive work of the wheel as near to Wh as possible.

The total fall may be divided into three parts : that in which

the water is filling the buckets, that in which the water is descend-
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ing in the filled biu-kets. and that which remains after the biu i

are emptied. Let the first of these parts be called hQ , and the

last //i. In falling the dis-

tance /r the water acquires

a velocity i'u which is approxi-

matelv equal to V2g// , and

then, striking the buckets,

this is reduced to u, the tan-

gential velocity of the wheel,

whereby a loss of energy in

impact occurs. It then de-

scends through the distance

h /?o hi, acting by its

weight alone, and finally,

dropping out of the buckets,

reaches the level of the tail

race with a velocity which

causes a second loss of energy. Let h' be the head lost in enter-

ing the buckets, and let vi be the velocity of the water as it reaches

the level of the tail race. Then the hydraulic efficiency of the

wheel is given by the general formula (163), or

Fig. 164.

and to apply it, the values of h' and v\ are to be found. In this

equation v is the velocity due to the head h, or v = \2gh.

The head lost in impact when a stream of water with the

velocity VQ is enlarged in section so as to have the smaller velocity

, is, as proved in Art. 76,

h' = (^0
~ M)

2 _ PQ
2 ~ 2 VpU+ M2

2g 2g

The velocity Vi with which the water reaches the. tail race depends

upon the velocity u and the height hi. Its kinetic energy as it

leaves the buckets is W u*/2g, the potential energy of the fall

hi is Whi, and the resultant kinetic energy as it reaches the tail

race is W z>i
2
/2g ;

hence the value of v\ is

Pl = VwHh
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Inserting these values of h
f

and v\ in the formula for e, and

placing for v
2
its equivalent 2gh, there is found

_ flp
2

2V U + 2U2+ 2gki

2gh

The value of u which renders e a maximum is found by equat-

ing the first derivative to zero, which gives

u = ^VQ

or the velocity of the wheel should be one-half that of the entering

water. Inserting this value, the hydraulic efficiency correspond-

ing to the advantageous velocity is

2gh

and lastly, replacing vo
2
by its value 2gh ,

it becomes

2 h h

which is the maximum efficiency of the overshot wheel.

This investigation shows that one-half of the entrance fall

h and the whole of the exit fall hi are lost, and it is hence plain

that in order to make e as large as possible both h Q and hi should

be as small as possible. The fall h is made small by making the

radius of the wheel large ;
but it cannot be made zero, for then

no water would enter the wheel
;

it is generally taken so as to

make the angle about 10 or 15 degrees. The fall hi is made
small by giving to the buckets a form which will retain the

water as long as possible. As the water really leaves the wheel

at several points along the lower circumference, the value of hi

cannot usually be determined with exactness.

The practical advantageous velocity of the overshot wheel, as

determined by the method of Art. 149, is found to be about 0.400,

and its efficiency is found to be high, ranging from 70 to 90 percent.

In times of drought, when the water supply is low, and it is desirable

to utilize all the power available, its efficiency is the highest, since

then the buckets are but partly filled and hi becomes small. Herein

lies the great advantage of the overshot wheel
;
its disadvantage is in

its large size and the expense of construction and maintenance.
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The number of buckets and their depth are governed by no laws

except those of experience. Usually the number of buckets is about

5r or 6r, if r is the radius of the wheel in feet, and their radial depth
is from 10 to 15 inches. The breadth, of the wheel parallel to its

axis depends upon the quantity of water supplied, and should l>e so

great that the buckets are not fully filled with water, in order that they

may retain it as long as possible and thus make h
v small. The wind

should be set with its outer circumference at the level of the tail water.

Prob. 164. Estimate the horse-power and efficiency of an overshot

wheel which uses 1080 cubic feet of water per minute under a head of 26

feet, the diameter of the wheel being 23 feet, and the water entering 15

from the top and leaving 12 from the bottom.

ART. 165. BREAST WHEELS

The breast wheel is applicable to small falls, and the action of

the water is partly by impulse and partly by weight. As repre-

sented in Fig. 165 water

from a reservoir is admit-

ted through an orifice

upon the wheel under the

head hQ with the velocity

fl
;
the water being then

confined between the

vanes and the curved

breast acts by its weight

through a distance h?,

which is approximately

equal to h h$, until
Fig. 165.

finally it is released at the level of the tail race and departs with

the velocity w, which is the same as that of the circumference of

the wheel. The total energy of the water being Wh, the work

of the wheel is eWh, if e be its efficiency.

The reasoning of the last article may be applied to the biv.i-t

wheel, hi being made equal to zero, and the expression there de-

duced for e may be regarded as an approximate value of its the-

oretic efficiency. It appears, then, that e will be the greater the

smaller the fall h Q ;
but owing to leakage between the wheel and
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the curved breast, which cannot be theoretically estimated, and

which is less for high velocities than for low ones, it is not desir-

able to make VQ and ho small. The efficiency of the breast wheel is

hence materially less than that of the overshot, and usually ranges

from 50 to 80 percent, the lower values being for small wheels.

Another method of determining the theoretic efficiency of the

breast wheel is to discuss the action of the water in entering and

leaving the vanes as a case of impulse. Let at the point of en-

trance AVQ and Au be drawn parallel and equal to the velocities

Vo and u, the former being that of the entering water and the latter

that of the vanes. Let a be the angle between VQ and u, which

may be called the angle of approach. Then the dynamic pressure

exerted by the water in entering upon and leaving the vanes -is,

from Art. 158, p = Wv cosa-u

g

and the work performed by it per second is

-
U)U

g

This expression has its maximum value when

U = \VQ cosa

which gives the advantageous velocity of the wheel circumference,

and the corresponding work of the dynamic pressure is

Adding this to the work Whz done by the weight of the water,

the total work of the wheel when running at the advantageous

velocity is found to be

4g

or, if v 2 be replaced by its value Ci
2 -

2gh ,
where c\ is the coefficient

of velocity for the stream as it leaves the orifice of the reservoir,

whence the maximum hydraulic efficiency of the wheel is

e = Wcos2 -^+^ (165)
h h
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If in this expression //2 be replaced by h /;<>, and if c\ =* i and
= o, this reduces to the same value as found for the overshot

wheel. The angle , however, cannot be zero, for then the ill-

tion of the entering water would be tangential to the wheel, and

it could not impinge upon the vanes
;

its value, however, should

be small, say from 10 to 25. The coefficient Ci is to be renders 1

large by making the orifice of the discharge with well-rounded

inner corners so as to avoid contraction and the losses incident

thereto. The above formulas cannot be relied upon in practice

to give close values of k and e, on account of losses by foam and

leakage along the curved breast, which of course cannot be al-

gebraically expressed.

Prob. 165. A breast wheel is 10.5 feet in diameter, and has c\ - 0.93,

h = 4.2 feet, and a = 12 degrees. Compute the most advantageous num-
ber of revoluti6ns per minute.

ART. 166. UNDERSHOT WHEELS

The common undershot wheel has plane radial vanes, and the

water passes beneath it in a direction nearly horizontal. It may
then be regarded as a breast wheel where the action is entirely

by impulse, so that in the preceding equations fa becomes o,

7/o becomes h, and a will be o. The theoretic efficiency then is

e = \c*. In the best constructions the coefficient c\ is nearly

unity, so it may be concluded that the maximum efficiency of the

undershot wheel is about 0.5. Experiments show that its actual

efficiency varies from 0.20 to 0.40, and that the advantageous

velocity is about 0.4^0 instead of 0.520- The lowest efficiencies

are obtained from wheels placed in an unlimited flowing current,

as upon a scow anchored in a stream
;
and the highest from those

where the stream beneath the wheel is confined by walls so as to

prevent the water from spreading laterally.

The Poncelet wheel, so called from its distinguished inventor,

has curved vanes, which are so arranged that the water leaves

them tangentially, with its absolute velocity less than that of

the velocity of the wheel. If in Fig. 165 the fall /r2 be very small,

and the vanes be curved more than represented, it will exhibit
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the main features of the Poncelet wheel. The water entering

with the absolute velocity ^ takes the velocity u of the vane and

the velocity V relative to the vane. Passing then under the wheel,

its dynamic pressure performs work
;
and on leaving the vane

its relative velocity V is probably nearly the same as that at

entrance. Then if V be drawn tangent to the vane at the point

of exit, and u tangent to the circumference, their resultant will

be i, the absolute velocity of exit, which will be much less than u.

Consequently the energy carried away by the departing water

is less than in the usual forms of breast and undershot wheels,

and it is found by experiment that the efficiency may be as high

as 60 percent.

In Fig. 166 is shown a portion of a Poncelet wheel. At A
the water enters the wheel through a nozzle-like opening with the

absolute velocity VQ and at B it leaves with the absolute velocity

v\. In the figure A and B have the same elevation. At A the

entering stream makes the approach angle a with the circumfer-

ence of the wheel and the same angle with the vane, so that the

relative velocity V is equal to the velocity of the outer circum-

ference u. If h be the head on A
,
the theoretic work of the water

is Wh, and the work of the wheel is

and the efficiency, neglecting friction and leakage, is

2gh

Now, let GI be the coefficient of velocity of the entrance orifice,
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then VQ = CiV2gh. From the parallelograms of velocity

A and B, there are found

Z>o
u = v\

= 2 u sina = VQ tana
2 cosa

and for this velocity u the efficiency of the wheel is

e = ci
2
(i
- tan2

) (166)

If c\ = i and a =
o, the efficiency becomes unity. In the best

constructions c\ may be made from 0.95 to 0.98, but a cannot

be a very small angle, since then no water could enter the wheel.

If a = 30 and c\
=

0.95 the efficiency is 0.60, which is probably
a higher value than usually attained in practice. If the velocity

be greater or less than ^ /cos, the efficiency will be lowered on

account of shock and foam at A .

Prob. 166. Estimate the horse-power that can be obtained from an

undershot wheel with plane radial vanes placed in a stream having a mean

velocity of 5 feet per second, the width of the wheel being 15 feet, its di-

ameter 8 feet, and the maximum immersion of the vanes being 1.33 feet.

How many revolutions per minute should this wheel make in order to furnish

the maximum power ?

ART. 167. VERTICAL IMPULSE WHEELS

A vertical wheel like Fig. 166, but having smaller vanes

against which the water is delivered from a nozzle, is often called

an impulse wheel, or a "hurdy-gurdy"
wheel. The Pelton wheel, the Cascade

wheel, and other forms can be purchased

in several sizes and are convenient on ac-

count of their portability. Figure 167a

shows an outline sketch of such a wheel

with the vanes somewhat exaggerated in

size. The simplest vanes are radial planes

as at A
,
but these give a low efficiency.

Curved vanes, as at B, are generally used, Fig 167<J

as these cause the water to turn back-

ward, opposite to the direction of the motion, and thus to' k-ave

the wheel with a low absolute velocity (Art. 159). In the plan
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of the wheel it is seen that the vanes may be arranged so as also

to turn the water sidewise while deflecting it backward. The

experiments of Browne * show that with plane radial vanes the

highest efficiency was 40.2 percent, while with curved vanes or

cups 82.5 percent was attained. The velocity of the vanes which

gave the highest efficiency was in each case almost exactly one-

half the velocity of the jet.

The Pelton wheel is used under high heads, and also being of

small size it has a high velocity. The effective head is that

measured at the entrance of the nozzle by a pressure gage, cor-

rected for velocity of

approach and the loss in

the nozzle by formula

(83) i. These wheels are

wholly of iron, and are

provided with a casing

to prevent the spattering

of the water. Fig. 1676

shows a form with three

nozzles, by which three

streams are applied at

different parts of the

circumference, in order

to obtain a greater power
than by a single nozzle,

or to obtain a greater

speed by using smaller

nozzles. For an effective head of 100 feet and a single nozzle

the following quantities are given by the manufacturers :

Diameter in feet, 12346
Cubic feet per minute, 8.29 44.19 99.52 .176.7 398.1

Revolutions per minute, 726 363 242 181 121

Horse-powers, 1.40 7.49 16.84 29.93 67.3

and these figures imply an efficiency of 85 percent.

The general theory of these vertical impulse wheels is the same

as that given for moving vanes in Art. 158. Owing to the high

* Bowie's Treatise on Hydraulic Mining (New York, 1885), p. 193.

Fig. 1676.
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velocity, more or less shock occurs at entrance, and as the angle

of exit cannot be made small, the water leaves the vanes with

more or less absolute velocity. The advantageous velocity <i

the vanes or cups is between 40 and 50 percent of that of the

entering jet.

Prob. 167. The diameter of a hurdy-gurdy wheel is 12.5 feet betwo-n

centers of vanes, and the impinging jet has a velocity of 58.5 feet per sccoixl

and a diameter of 0.182 feet. The efficiency of the wheel is 44.5 pera-nt.

when making 62 revolutions per minute What effective horse-power docs

it furnish?

ART. 168. HORIZONTAL IMPULSE WHEELS

When a wheel is placed with its plane horizontal and is driven

by a stream of water from a nozzle, it is called a horizontal im-

pulse wheel. There are two forms, known as the outward-flow

and the inward-flow wheel. In the former, shown in Fig. 168a,

the water enters the wheel upon the inner and leaves it upon the

Fig. 168a.

outer circumference; in the latter, shown in Fig. 168ft, the water

enters upon the outer and leaves upon the inner circumferemv.

The water issuing from the nozzle with the velocity v impinges

upon the vanes, and in passing through the wheel alters boih its

direction and its absolute velocity, thus transforming its energy

into useful work. The energy of the entering water is W :

and that of the departing water is W vS/2g. Neglecting fric-

tional resistances, the work imparted to the wheel by the water is

k = w( -
W 2S
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and dividing this by the theoretic energy, the efficiency is

e= i- (vi/v)
2

This is the same as the general formula (163) if h' = o
; thaUs, if

losses in foam and friction are disregarded, and if the wheel is

set at the level of the tail race. It is now required to state the

conditions which will render these losses and also the velocity

?>i as small as possible. The reasoning will be general and appli-

cable to both outward and inward-flow wheels.

At the point A where the water enters the wheel let the paral-

lelogram of velocities be drawn, the absolute velocity of entrance

being resolved into its two components, the velocity u of the wheel

at that point, and the velocity V relative to the vane; let the

approach angle between u and v be called a, and the entrance

angle between u and V be called $. At the point B where the

water leaves the wheel let V\ be its velocity relative to the vane,

and HI the velocity of the wheel at that point ;
then their result-

ant is vi, the absolute velocity of exit. Let the exit angle between

Fi and the reverse direction of HI be called j3. The directions of

the velocities u and u\ are of course tangential to the circumfer-

ences at the points A and B. Let r and r\ be the radii of these

circumferences
;
then the velocities of revolution are directly as

the radii, or ur\ = u\r.

In order that the water may enter the wheel without shock

and foam, the relative velocity V should be tangent to the vane

at A, so that the water may smoothly glide along it. This will

be the case if the wheel is run at such speed that the parallelo-

gram at A can be formed, or when the velocities u and v are pro-

portional to the sines of the angles opposite them in the triangle

Auv. The velocity Vi will be rendered very small by running the

impulse wheel at such speed that the velocities u\ and V\ are

equal, since then the parallelogram at B becomes a rhombus and

the diagonal vi is very small. Hence

o and Ui = Vi

are the two conditions of maximum hydraulic efficiency.
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Now, referring to the formula (160), which expresses the re-

lation between the velocities of rotation and the relative \el<>. iti, .

of the water for revolving vanes, it is seen that if //,
= V t . tl.ni

also u = V. But u cannot equal V unless 4>
= 2, and then

u = 0/2 cos, which is the advantageous velocity of the circum-

ference at A. Therefore the two conditions above reduce to

<t>
= 2a and = -

(168),
2 cosa

which show how the wheel should be built and what speed it

should have to secure the greatest efficiency. When this speed

obtains, the absolute velocity Vi is

= 2! sn /
= 2 sn = v-

r r cos

and the corresponding hydraulic efficiency is

\r cosa

by the discussion of which proper values of the approach angle u

and the exit angle ft can be derived.

This formula shows that both the approach angle and the

exit angle ft should be small in order to give high efficiency, but

they cannot be zero, as then no water could pass through the

wheel; values of from 15 to 30 are usual in practice. It

also shows that ft is more important than
,
and if ft be small,

may sometimes be made 40 or 45. It likewise shows that for

given values of and ft the inward-flow wheel, in which r\ is less

than r, has a higher efficiency than the outward-flow wheel.

The condition Ft
= HI renders the absolute exit velocity t>, very

small, but it does not give its true minimum. This will be obtained

by making Vl
=

t cos /3, so that the direction of vl is normal to that

of FI, and thus v = u sin ft. The discussion of water wheels and tur-

bines under this condition of the true minimum leads to very complex

formulas, and hence in this book, as in many others, the simpler con-

dition Vl
= HI is used.

Prob. 168. Compute the maximum efficiency of an outward-flow im-

pulse wheel when n = 3 feet, r = 2 feet, a = 45, ^ = 90, ft
=* 30, and
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find the number of revolutions per minute required to secure such effi-

ciency when the velocity of the entering stream is v = 100 feet per second.

ART. 169. DOWNWARD-FLOW IMPULSE WHEELS

In the impulse wheels thus far considered the water leaves the

vanes in a horizontal direction. Another form used less frequently

is that of a horizontal wheel driven by water issuing from an in-

clined nozzle so that it

passes downward along the

vanes without approaching

or receding from the axis.

Figure 169 shows an out-

line plan of such an

impulse wheel and a de-

velopment of a part of a

cylindrical section. Let v

be the velocity of the en-

tering stream, u that of the

wheel at the point where it

strikes the vanes, and vt

the absolute velocity of the

departing water. At the

entrance A the direction

of i) makes with that of u

the approach angle ,
and

Fig. 169. the direction of the rela-

tive velocity V makes with

that of u the entrance angle <. The water then passes over

the vane, and, neglecting the influence of friction and gravity, it

issues at B with the same relative velocity V, making the exit

angle ft with the plane of motion.

The condition that impact and foam shall be avoided at A
is fulfilled by making the relative velocity V tangent to the vane,

and the condition that the absolute velocity vi shall be small is

fulfilled by making the velocities u and V equal at B. Hence,

as in the last article, the best construction is to make
<f>
= 2,



Downward-flow Impulse Wh. <!*. Art. 169 117

and the best speed of the wheel is u = 0/2cos. Also by t he-

same reasoning the efficiency under these condition-

e= i (sin i/8/cosa)
2

which shows that
,
and especially ft, should be a small angle i >

give a high numerical value of e. For instance, if both these

angles are 30, the efficiency is 0.92, but if = 45 and = 10,
the efficiency is 0.94.

Although these wheels are but little used, there seems to be no

hydraulic reason why they should not be employed with a, su<

equal to or greater than that attained by vertical impulse whirl-.

It will be possible to arrange several nozzles around the circumferciuv

and thus to secure a high power with a small wheel. The fall of the

water through the vertical distance between A and B will also add

slightly to the power of the wheel, and if this be taken into account,

the above values of advantageous velocity and efficiency will be modi-

fied, both being slightly increased, as the following investigation sh<

Let /T! be the vertical fall between A and B\ then the theoretic

energy of the water with respect to B is

V 2g 2g

and the hydraulic efficiency of the wheel is

e = i

Here the relative velocity Vi at B is greater than V, or

and since u should equal Fb this equation becomes, after inserting

for V its value in terms of u, v, and ,

2 COSrt

which gives the advantageous velocity of the wheel. Since

v\
= 2u sin J0,

^

the above expression for the theoretic hydraulic efficiency reduce^ to
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For this case the approach angle < must be a little greater than 2 a,

and its value can be found by
v
2 + 2ghi

COt<p = COt o .'

zr sin 2a

and by using this angle <, losses due to impact will be avoided when

the wheel is run at the advantageous speed. For example, if v = 50

feet per second, and hi
= i foot, and a = 30, the value of < is about

63 instead of 60 as the simpler condition requires, while the increase

in the advantageous speed is about 2 percent over the former value.

Prob. 169. A wheel like Fig. 169 is driven by water which issues from

a, nozzle with a velocity of 100 feet per second. If the diameter is 3 feet, the

efficiency 0.90, and the approach angle = 45, find the best value of the

entrance and exit angles and the best speed.

ART. 170. NOZZLES FOR IMPULSE WHEELS

Impulse wheels are driven by the dynamic pressure of water

issuing from nozzles attached to the end of a pipe which conducts

the water from a reservoir. It is shown in Art. 101 that the

greatest velocity is secured when the diameter of the nozzle is as

small as possible and that the greatest discharge occurs when there

is no nozzle. To secure the greatest power, however, there is a

certain diameter of nozzle which will now be determined, and it is

advisable for economical reasons to use a nozzle of this size and

adjust the speed of the wheel thereto.

Let h be the hydrostatic head on the nozzle, / the length, and

d the diameter of the pipe, and D the diameter of the nozzle.

Let all the resistances except that due to friction in the pipe and

nozzle be neglected ;
then from Art. 101 the velocity of the jet

from the nozzle is

in which /is the friction factor for the pipe and c\ is the coefficient

of velocity for the nozzle. Let w be the weight of a cubic foot

of water
;
then the theoretic energy of the jet per second is
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and the value of D which renders this a maximum is, by the usual

method of differentiation, ascertained to be

(170)

and for a nozzle of this size the velocity of the jet is

or, since c\ is about 0.97, the velocity of the jet when leaving the

nozzle is about 80 percent of the theoretic velocity due to the

head on the nozzle.

As an example let a pipe be 1200 feet long and i foot in

diameter
; then, taking for / the mean value 0.02 and using

c\ = 0.97, there is found D =
0.39 feet, and hence a nozzle 4!

inches in diameter is required to give the maximum power. This

result may be revised, if thought necessary, by finding the velocity

in the pipe and thus getting a better value of/ from Table 900.

If the head be 100 feet, this velocity is found to be 9.2 feet per

second, whence / = 0.018, and on repeating the computation

there is found D = 0.40 feet = 4.8 inches. If the pipe be 12 ooo

feet long, the advantageous diameter of the nozzle will be found

to be much smaller, namely, 2\ inches.

When there is more than one nozzle at the end of the pipe, the above

investigation must be modified. Let there be two nozzles with the

diameters D and Z?2 ,
each having the coefficient c\. Then the dis-

charge \TT<PV through the pipe equals the discharge \^(D^\\ + D?\').

But the velocities Vl and \\ are equal if the tips of the nozzles are on

the same elevation, and hence (Pv equals (D? +A2
) V, where I

the velocity of flow from each nozzle. Now, referring to Art. 101

and to the proof of (170), it is seen that it applies to this case provided

D2 be replaced by D? -f- Z)2
2

,
and accordingly

i
2
/)

*
(170) 2

is the formula for determining the sizes of the two nozzles which will

furnish the maximum power ;
if A be assumed, the value of D2 can

be computed. The area of the circle of diameter D found from

(170)! is equal to the sum of the areas of the two circles found from

(170) 2 . If there be three or more nozzles, the sum of their areas is

equal to that corresponding to the diameter D as computed from
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(170)!. For example, let there be a pipe 1200 feet long and one foot

in diameter to which three nozzles of equal size are attached. The
diameter found above for one nozzle is 4.80 inches, and the correspond-

ing area is 18.10 square inches; hence the area of the cross-section

of the tip of each of the three nozzles is 6.03 square inches, which cor-

responds to a diameter of 2.77 inches.

Prob. 170. A pipe 15 ooo feet long and 18 inches in diameter runs from

a mountain reservoir to a power plant, where the water is to be delivered

through two nozzles against a hurdy-gurdy wheel. If the diameter of one

nozzle is 2 inches, find the diameter of the other in order that the maximum

power may be developed. If the head on the nozzles is 623 feet and the

efficiency of the wheel 79 percent, compute the horse-power that may be

expected.

ART. 171. SPECIAL FORMS OF WHEELS

Numerous varieties of the water wheels above described have

been used, but the variation lies in mechanical details rather

than in the introduction of any new hydraulic principles. In

order that a wheel may be a success it must furnish power as

cheap as or cheaper than steam or other motors, and to this

end compactness, durability, and low cost of installation and

maintenance are essential.

A variety of the overshot wheel, called the back-pitch wheel,

has been built, in which the water is introduced on the back instead

of on the front of the wheel. The buckets are hence differently

arranged from those of the usual form, and the wheel revolves

also in an opposite direction. One of the largest overshot wheels

ever constructed is at Laxey, on the east coast of the Isle of

Man. It is 72! feet in diameter, about 10 feet in width, and

furnishes about 150 horse-power, which is used for pumping
water out of a mine.

A breast wheel with very long curved vanes extending over

nearly a fourth of the circumference has been used for small falls,

the water entering directly from the penstock without impulse,

so that the action is that of weight alone. This form is made of

iron and gives a high efficiency.

Undershot wheels with curved floats for use in the open cur-

rent of a river have been employed, but in order to obtain much
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power they require to be large in size, and hence have not been

able to compete with other forms. The great amount of power
wasted in all rivers should, however, incite inventors to de

wheels that can economically utilize it. Currents due to the

movement of the tides also afford opportunity for the exercise

of inventive talent.

The conical wheel, or danaide, is an ancient form of down-

ward-flow impulse wheel, in which the water approaches the axis

as it descends, and thus its relative motion is decreased by the

centrifugal force. The theory of this is almost precisely the same

as that of an inward-flow impulse wheel, and there seems to be

no hydraulic reason why it should not give a high efficiency.

Another form of danaide has two or more vertical vanes attached

to an axis, which are inclosed in a conical case to prevent the

lateral escape of the water.

A water-pressure engine is a hydraulic motor which moves under

the static pressure of water acting against a piston or a revolving

disk. The piston forms are reciprocating in motion like the steam-

engine and operate in the same way, the water entering and leaving

through ports which are opened and closed by a link motion con-

nected with the piston-rod. The other forms give rotary motion

directly from the revolving vanes or disks. The piston engine has

been employed in Germany to a considerable extent to drive pumps
for draining mines, but the rotary engine has not been widely used,

and it cannot be advantageously arranged to deliver a high power.

On account of the incompressibility of water, special devices for

regulating the opening and closing of the valves are necessary.

Numerous other special devices for utilizing the energy of water

by means of water wheels have been invented, but they do not in-

troduce any new hydraulic principle. The efficiency of these special

forms is often low on account of the imperfections of the apparatus.

but it should be borne in mind that high efficiency is only obtained after

trials extending over much time, such trials enabling the imper-

fections to be discovered and removed. The formulas for hydraulic

efficiency deduced in the preceding pages do not include losses due to

friction, and these may often amount to 10 or 20 percent of the

theoretic energy, so that due allowance for them should be made in

estimating the power which a proposed design may deliver.
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Power may be obtained from the ocean waves, which are constantly

rising and falling, by a suitable arrangement of wheels and levers, and

some inventions in this direction have given fair promise of success.

One in operation on the coast of England about 1890 consisted of a

large buoy which rose and fell with the waves on a fixed vertical

shaft fastened in the rock bottom. As the buoy moved up and down

it operated a system of levers and wheels which drove an air-compressor,

and this in turn ran a dynamo that generated electric power. The rise

of the ocean tide also affords opportunity for impounding water which

may be used to generate power when the tide falls. Plants for this

purpose are to be located along tidal rivers where opportunities for

impounding occur, the wheels being idle during the rise of the tide,

and in operation during its fall. Owing to this intermittent gener-

ation of power, it will be necessary to provide for its storage, so that

industries using it may be in continuous operation.

Prob. 171<z. A wheel using 10.5 cubic meters of water per minute under

an effective head of 23.4 meters has an efficiency of 75 percent. What metric

horse-power does it deliver ? What is its power in kilowatts ?

Prob. 1716. A breast wheel has c\ = 0.95, hQ
=

1.3 meters, and a = 12.

If its diameter is 3.5 meters, compute the most advantageous number of

revolutions per minute.

Prob. 171c. An inward-flow impulse wheel has <i>
= 104, a = 52,

and /3
= 12, its inner diameter being 0.82 meters and its outer diameter

1.22 meters. If this wheel uses 0.86 cubic meters of water per second under

an effective head of 7.9 meters, compute its efficiency and its probable effec-

tive horse-power.

Prob. I7ld. A pipe 3200 meters long and 40 centimeters in diameter

delivers water through two nozzles against a hurdy-gurdy wheel. When the

diameter of one nozzle is 5 centimeters, find the diameter of the other nozzle

in order that the energy of the two jets may be a maximum. If the head

on the nozzles is 107 meters and the efficiency of the wheels is 81 percent,

compute the horse-power which the wheels will deliver.
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CHAPTER 14

TURBINES

ART. 172. THE REACTION WHEEL

The reaction wheel, invented by Barker about 1740, consists

of a number of hollow arms connected with a hollow vertical shaft,

as shown in Fig. 172. The water issues from the ends of the

arms in a direction opposite to that of their motion, and by
the dynamic pressure due to its reaction

the energy of the water is transformed

into useful work. Let the head of water

CC in the shaft be //
;
then the pressure-

head BB which causes the flow from

the arms is greater than h, on account

of the centrifugal force due to the rota-

tion of the wheel. Let u\ be the abso-

lute velocity of the exit orifices, and V\

be the velocity of discharge relative to

the wheel
; then, as shown in Art. 29,

and also in Art. 162,

The absolute velocity v\ of the issuing

water now is

Fig. 172.

It is seen at once that the efficiency can never reach unity unless

vi =
o, which requires that V\ = u\. This, however, can only

occur when u\ = oo
,
since the above formula shows that V\ must

be greater than u\ for any finite values of h and u\. To de-

duce an expression for the efficiency the work of the wheel
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W(h Vi
2
/2g) is to be divided by the theoretic energy of the

water Wh, and this gives

_ T-

which shows, as before, that e equals unity when V\ = u\= oo .

If Vi =
2#i, the value of e is 0.667 5

if PI =
3^1, the value of e

is reduced to 0.50.

This investigation indicates that the efficiency of a reaction

wheel increases with its speed. If di be the area of the exit orifices

and w the weight of a cubic unit of water, the weight of the water

discharged in one second is waiVi, which becomes infinite when

Vi = HI = oo . Nothing approaching this can be realized, and

on account of losses due to friction, a very high speed is imprac-

ticable. The reaction wheel, indeed, is like the jet propeller in

regard to efficiency (Art. 186).

To consider the effect of friction in the arms, let c be the coefficient

of velocity (Chap. 7), so that

Then the effective work of the wheel is

''I

2
Ui) U\

g

and the corresponding efficiency of the wheel is

_
J*

The value of j, which renders this a maximum, is

Vi-tf

and this reduces the value of the efficiency to

e=i-V7^? (172),

If ci = i, there is no loss in friction, and % = o and e i, as be-

fore deduced. If c\
=

0.94, the advantageous velocity u\ is very nearly

~\/2gh, and e is 0.66
;
hence the influence of friction in diminishing the

efficiency is very great. In order to make GI large, the end of the arm
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where the water enters must be well rounded to prevent contraction,
and the interior surface must be smooth. If the inner end has sharp,

square edges, as in a standard tube (Art. 78), <;, is 0.82, and r is 0.4 ?.

The reaction wheel is not now used as a hydraulic motor on account

of its low efficiency. Even when run at high speeds the efficiency

is low on account of the greater friction and resistance of the air.

By experiments on a wheel one meter in diameter under a head of

1.3 feet Weisbach found a maximum efficiency of 67 percent when the

velocity of revolution z^ was V2gA. When HI was 2\/2gA, the efficiency

was nothing, or all the energy was consumed in frictional resistances.

The reaction wheel is here introduced at the beginning of the dis-

cussion of turbines mainly to call attention to the fact that the dis-

charge varies with the speed. Although sometimes called a turbine,

it can scarcely be properly considered as belonging to that class of

hydraulic motors.

Prob. 172. The sum of the exit orifices of a reaction wheel is 4.25

square inches, their radius is 1.75 feet, and their velocity 32.1 feet, per
second. Compute the head necessary to furnish 1.6 horse-powers, when

c\ =
0.95.

ART. 173. CLASSIFICATION OF TURBINES

A turbine wheel may be denned as one in which the water

enters around the entire circumference instead of upon one por-

tion, so that all the moving vanes are simultaneously acted upon

by the dynamic pressure of the water as it changes its direction

and velocity. The turbine was invented by Fourneyron in 1827,

and owing to its compactness, cheapness, and high efficiency, it

has largely replaced the older forms of water wheels. Turbines

are usually horizontal wheels, and like the impulse wheels of the

last chapter, they may be outward-flow, inward-flow, or down-

ward-flow, with respect to the manner in which the water passes

through them. In the outward-flow type the water enters the

wheel around the entire inner circumference and passes out around

the entire outer circumference (Fig. 174ft). In the inward-flow

type the motion is the reverse (Fig. 174c). In the downward-

flow type the water enters around the entire upper annular

openings, passes downward between the moving vanes, and

leaves through the lower annulus (Fig. 179a). In all cases the
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water in leaving the wheel should have a low absolute velocity, so

that most of its energy may be surrendered to the turbine in the

form of useful work.

The supply of water to a turbine is regulated by a gate or

gates, which can partially or entirely close the orifices where the

water enters or leaves. The guides and wheel, with the gates
and the surrounding casings, are made of iron. Numerous forms

with different kinds of gates and different proportions of guides
and vanes are in the market. They are made of all sizes from

6 to 60 inches in diameter, and larger sizes are built for special

cases. The great turbines at Niagara are of the outward-flow

type, the inner diameter of a wheel being 63 inches and each twin

turbine furnishing about 5000 horse-powers (Art. 182). The
smaller sizes of turbines used in the United States are mostly of

the inward-flow type or of a combined inward- and downward-
flow type.

The three typical classes of turbines above described are often

called by the names of those who first invented or perfected them ;

thus the outward-flow is called the Fourneyron, the inward-flow

the Francis, and the downward-flow the Jonval turbine. There

are also many turbines in the market in which the flow is a com-

bination of inward and downward motion, the water entering

horizontally and inward, and leaving vertically, the vanes being

warped surfaces. The usual efficiency of turbines at full gate
is from 70 to 85 percent, although 90 percent has in some cases

been derived. When the gate is partly closed, the efficiency in

general decreases, and when the gate opening is small, it becomes

very low. This is due to the loss of head consequent upon the

sudden change of cross-section; and therein lies the disadvan-

tage of the turbine, for when the water supply is low, it is im-

portant that it should utilize all the power available. A com-

pilation of turbine tests with descriptions of the various forms

of wheels has been made by Horton and issued by the United

States Geological Survey.*

Another classification is into impulse and reaction turbines.

* Water Supply and Irrigation Paper, No. 180, 1906.
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In an impulse turbine the water enters the wheel with a velo

due to the head at the point of entrance, just as it does from tin

nozzle which drives an impulse wheel (Art. 168). In a reaction

turbine, however, the velocity of the entering water may be

greater or less than that due to the head on the orifices of cntr.i:

and, as in the reaction wheel, it is also influenced by the speed.

This is due to the fact that in a reaction turbine the stutiV
;

sure of the water is partially transmitted into the moving \vl

provided that the spaces between the vanes are fully filled. Any
turbine may be made to act either as an impulse or a reaction

turbine. If it be arranged so that the water passes through the

vanes without filling them, it is an impulse turbine; if it be

placed under water, or if by other means the flowing water i>

compelled to completely fill all the passages, it acts as a reaction

turbine. As will be seen later, the theory of the reaction turbine

is quite different from that of the impulse turbine.

Prob. 173. If the efficiency of a turbine is 75 percent when delivering

5000 horse-powers under a head of 136 feet, how many cubic feet of water per

minute pass through it ?

ART. 174. REACTION TURBINES

A reaction turbine is driven by the dynamic pressure of

flowing water which at the same time may be under a certain

degree of static pres-

sure. If in the reaction

wheel of Fig. 172 the

arms be separated from

the penstock at A
,
and

be so arranged that BA
revolves around the axis

while AC is stationary,

the resulting apparatus

may be called a reac-

tion turbine. The static

pressure of the head CC
can still be transmitted

through the arms, so Fi. I74o.
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that, as in the reaction wheel, the discharge will be influenced

by the speed of rotation. The general arrangement of the

moving part is, however, like that of an impulse wheel, the

vanes being set between two annular frames, which are attached

Fig. 174ft. Fig. 17<k.

by arms to a central axis. In Fig. 174a is a vertical section

showing an outward-flow wheel W to which the water is

brought by guides G from a fixed penstock P. Between the

guides and the wheel there is an annular space in which slides

Fig. 11U.
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an annular vertical gate E ;
this serves to regulate the quantity

of water, and when it is entirely depressed, the wheel stops.

Many other forms of gates are, however, used in the different

styles of turbines found in the market.

In Figs. 1746 and 174c are given horizontal and vertical sec-

tions of both the outward- and the inward-flow types, showing
the arrangement of guides and vanes. The fixed guide passages
which lead the water from the penstock are marked G, while the

moving wheel is marked W. It is seen that the water is intro-

duced around the entire circumference of the wheel, and h<

the quantity supplied, and likewise the power, is far greater than

in the impulse wheels of the last chapter.

In order that the static pressure may be transmitted into the

wheel it is placed under water, as in Fig. 174a, or the exit orifices

are partially closed by gates, or

the air is prevented from enter-

ing them by some other device.

In Fig. I74d a LerTel turbine

of the inward-flow type is illus-

trated, the arrows showing the

direction of the water as it enters

and leaves. The wheel itself is

not visible, it being within the

inclosing case through which the

water enters by the spaces be-

tween the guides. In Fig. 174e

is shown a view of a Hunt tur-

bine, which is also of the inward-

and downward-flow type. In

both cases the guides are seen

with the small shaft for moving
the gates, these being partly raised

in Fig. 174e. The flange at the
Fig I74e

base of the guides serves to sup-

port the weight of the entire apparatus upon the floor of the

inclosing penstock, which is filled with water to the level of
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the head bay. The cylinder below the flange, commonly called

a draft-tube, carries away the water from the wheel, and the

level of the tail water should stand a little higher than its

lower rim in order to prevent the entrance of air and thus in-

sure that the wheel may act as a reaction turbine. Iron pen-
stocks are frequently used instead of wooden ones, and for the

pure outward- and inward-flow types the wheel is often placed
below the level of the tail race.

Turbines are sometimes placed vertically on a horizontal

shaft. Fig. 174/ shows twin Eureka turbines thus arranged in

Fig. 174/.

an inclosing iron casing. The water enters through a large

pipe attached to the cylinder opening, and having filled the

cylindrical casing, it passes through the guides, turns the wheels,

and escapes by. the two elbows. Large twin vertical turbines fur-

nishing 1200 horse-powers have been installed at Niagara Falls

by the James Leffel Company.

All reaction turbines will act as impulse turbines when from

any cause the passages between the vanes, or buckets, as they
are generally called, are not filled with water. In this case the

theory of their action is exactly like that of the impulse wheels

described in the last chapter. In Arts. 175-178 reaction turbines

of the simple outward- and inward-flow types will be discussed,

the downward-flow type being reserved for special description

in Art. 179.

Prob. 174. Consult Engineering Record, Feb. 5, 1898, and describe

methods of regulating the speed of turbines.
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ART. 175. FLOW THROUGH REACTION TURBINES

The discharge through an impulse turbine, like that for an

impulse wheel, depends only on the area of the guide orifices and

the effective head upon them, or q =av = a^/2gh. In a rr

action turbine, however, the discharge is influenced by the speed
of revolution, as in the reaction wheel, and also by the areas of

the entrance and exit orifices. To find
i

an expression for this discharge let the

wheel be supposed to be placed below

the surface of the tail water, as in Fig.

175. Let h be the total head between

the upper water level and that in the

tail race, Hi the pressure-head on the exit

orifices, and H the pressure-head at the

gate opening as indicated by a piezom-

eter supposed to be there inserted. Let

Ui and u be the velocities of the wheel at

the exit and entrance circumference, which have radii r\ and r

(Fig. 1746). Let V\ and V be the relative velocities of exit and

entrance, and VQ be the absolute velocity of the water as it

leaves the guides and enters the wheel
;

the entering velocity TO

may be less or greater than V2gh, depending upon the value

of the pressure-head H. Let a\, a, and a be the areas of the

orifices normal to the directions of V\, V, and v . Now, neglect-

ing all losses of friction between the guides, the theorem of

Art. 31, that pressure-head plus velocity-head equals the total

head, gives the equation

Fig. 175.

Also, neglecting the friction and foam in the buckets, the corre-

sponding theorem of Art. 162 gives

F2 2

H I

!

2g 2g 2g 2g

Adding these equations, the pressure-heads H\ and H disappear,

and there results the formula
- 2

(175)i
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Now, since the buckets are fully filled, the same quantity of

water, q, passes in each second through each of the areas a\,

a, and a
,
and hence the three velocities through these areas have

the respective values,

Introducing these values into the formula (175)i, solving for q,

and multiplying by a coefficient c to account for losses in leakage

and friction, the discharge per second is

(175),

This is the formula for the flow through a reaction turbine when

the gate is fully raised. The reasoning applies to an inward-flow

as well as to an outward-flow wheel. In an outward-flow turbine

u\ is greater than u, and consequently the discharge increases

with the speed ;
in an inward-flow turbine u\ is less than u, and

consequently the discharge decreases as the speed increases.

The value of the coefficient c will usually vary with the head, and

also with the size of the areas a-i, a, and a . When a turbine has been

tested by the methods of Arts. 147-150, and the areas have been meas-

ured, the values of c for different speeds may be computed. For

example, take the outward-flow Boyden turbine, tests of which at full

gate are given in Art. 150. The measured dimensions and angles of

this wheel are as follows :

Outer radius of wheel r\ = 3.3167 feet

Inner radius of wheel r = 2.6630 feet

Outer radius of guide case r =
2.5911 feet

Outer depth of buckets di = 0.722 feet

Inner depth of buckets d = 0.741 feet

Outer area of buckets a\ = 4.61 square feet

Inner area of buckets a = 12.12 square feet

Outer area of guide orifices a = 4.76 square feet

Exit angle of buckets fi
=

13.5 degrees

Entrance angle of buckets <#>
= 90 degrees

Entrance angle of guides a = 24 degrees

Number of buckets 52, number of guides, 32
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Inserting in the above formula the values of a,, a, and J
, placing for

,

2- u- its value (iftj^V)
2
(r^-r

2
), where A

T
is the number of rcvului

per minute, it reduces to

q
=

From this the value of c may be computed for each of the seven CXJH r-

iments, and the following tabulation shows the results, the first four

columns giving the number of the experiment, the observed head, num-

ber of revolutions per minute, and discharge in cubic feet per second.

The fifth column gives the theoretic discharge computed from tin-

above formula, taking the coefficient as unity, and the last column

is derived by dividing the observed discharge q by the theoretic d\^-

charge Q. The discrepancy of 5 or 6 percent is smaller than might

be expected, since the formula does not consider frictional resistances.

No.
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ART. 176. THEORY OF REACTION TURBINES

The theory of reaction turbines may be said to include two

problems: first, given all the dimensions of a turbine and the

head under which it works, to determine the maximum efficiency,

and the corresponding speed, discharge, and power ;
and second,

having given the head and the quantity of water, to design a

turbine of high efficiency. This article deals only with the first

problem, and it should be said at the outset that it cannot be

fully solved theoretically, even for the best-conditioned wheels,

on account of losses in foam, friction, and leakage. The investi-

gation will be limited to the case of full gate, since when the gate

is partially depressed, a loss of energy results from the sudden

expansion of the entering water.

The notation will be the same as that used in Chaps. 11

and 12, and as shown in Figs. 174& and 174c
;
the reasoning will

apply to both outward- and inward-flow turbines. Let r be the

radius of the circumference where the water enters the wheel and

r\ that of the circumference where it leaves, let u and u\ be the

corresponding velocities of revolution
;

then ur\ = u\r. Let VQ

be the absolute velocity with which the water leaves the guides

and enters the wheel, and V its velocity of entrance relative to the

wheel; let be the approach angle and </> the entrance angle

which these velocities make with the direction of u. At the exit

circumference let V\ be the relative velocity with which the water

leaves the guides, and v\ its absolute velocity ;
let /3 be the exit

angle which V\ makes with this circumference. Let a
, a, and #1

be the areas of the guide orifices, the entrance, and the exit orifices

of the wheel, respectively, measured perpendicular to the direc-

tions of V Q , V, and V\. Let d
, d, and d\ be the depths of these

orifices
;
when the gate is fully raised, d becomes equal to d.

The areas a
, a, 0i, neglecting the thickness of the guides and

vanes, and taking the gate as fully open, have the values

#0 = 2irrd sin a = 2irafein< a\ = 27rr\di sin/3

and since these areas are fully filled with water,

q
=

VQ 27rrd sina = V 27rrd sin</>
= V\ -

2r\d\ sin/3 (176)i
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These relations, together with the formulas of the last art

and the geometrical conditions of the parallelograms of velocii

include the entire theory of the reaction turbine.

In order that the efficiency of the turbine may be as hi^'

possible the water must enter tangentially to the vanes, and tin-

absolute velocity of the issuing water must be as small as possible.

The first condition will be fulfilled when u and VQ are proportional

to the sines of the angles <f>
a and

(f>. The second will be se-

cured by making Ui = V\ in the parallelogram at exit, as then

the diagonal v\ becomes very small. Hence

are the two conditions which should obtain in order that the

hydraulic efficiency may be a maximum.

Now making FI = u\ in the third quantity of (176) i and

equating it to the first, there results

#1 _ rd sina , ** _ r*d since

v ndi sin/3 VQ r\*d sin

Also making V\ = HI in (175) i and substituting for K2
its value

w2
-f- Vo

2 2UVQ cosa from the triangle at A between u and VQ,

there is found the important relation

uvo cos" = gh (176) 3

which gives another condition between u and v . The vel<>

VQ ,
with which the water enters, hence depends upon the speed of

the wheel as well as upon the head h.

Thus three equations between two unknown quantities u and

v have been deduced for the case of maximum hydraulic efficiency.

namely,

u. = sin(<ft
-

a) u _ rV sin w = ^h_
v sin< VQ r\d\ sin$ cosa

If the values of the velocities u and VQ be found from the first and

third equations, they are

/<**(-.) /

(176)
\ cosa sm<#> \cosa sm(9 a)



466 Chap. 14. Turbines

the first of which is the advantageous velocity of the circumference

where the water enters, and the second is the absolute velocity
with which the water leaves the guides and enters the wheel.

In order, however, that these expressions may be correct, the

first and second values of U/VQ must also be equal, and hence

sin (<ft
-

) _ r
2d sina /17A

sin< rfa sin/3

which is the necessary relation between the dimensions and

angles of the wheel in order that this theory may apply.

For a turbine so constructed and running at the advantageous

speed the theoretic hydraulic efficiency is

2gh gh

and substituting for HI its value in terms of u from (176) 4 ,
and

having regard to (176) 5 ,
this becomes

e=i-^- tanatanJ/3 (176) 6

di

The discharge under the same conditions is q = a v
,
and lastly

the work of the wheel per second is k = wqhe.

The result of this investigation is that the general problem of

investigating a given turbine cannot be solved theoretically, unless

it be so built as to approximately satisfy the condition in (176) 5.

If this be the case, it may be discussed by the formulas deduced. Even
then no very satisfactory conclusions can be drawn from the numerical

values, since the formulas do not take into account the loss by friction

and that of leakage. To determine the actual efficiency, best speed,

and power of a given turbine, the only way is to actually test it by the

method described in Art. 149. The above formulas are, however,
of great value in the discussion of the design of turbines. More
exact formulas, from a theoretical standpoint, may be derived by using
the condition Vl

= HI cos/3 instead of Vl
= u^ to determine the exit

velocity v1 (Art. 168), but these are very complex in form, and numeri-

cal values computed from them differ but little from those found from

the formulas here established.

When the coefficient of discharge of a turbine is known (Art.

175), the advantageous speed and corresponding discharge may be
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closely computed. For this purpose the condition u, Kt g/a t is

to be used. Inserting in this the value of q from (175), and solving

for //,. there is found

r* - 2//

fV a f af

which gives the advantageous velocity of the circumference where the

water leaves the wheel, and then by (175)2 the discharge can be ob-

tained. As an example, take the case of Holyoke test No. 275, where

TI
= 2i\ inches, r = 2\\ inches, h = 23.8 feet, a = 2.066, a =

5.526,

<?j
= 1.949 square feet,

=
25J, <f>

= 90, ft = u}. Assuming
c = 0.95, as the turbine is similar to that investigated in the lu-t

article, the above formula gives u = 31.24 feet per second, which cor-

responds to 130 revolutions per minute, and this agrees well with t he-

actual number 138. The efficiency found by the test at that speed wa>

0.79, which is a very much less value than the above theoretic formula

gives, since this formula was derived without taking into account t he-

friction losses within and without the wheel.

Prob. 176. For the case of the last problem r = 4.67, r\ - 3.95,

d =
i.oi, </j

=
1.23, /i = 13.4 feet,

= 9. 5, <f>
= 119, ft

= 11. Compute
the areas a

, a, ai, and the advantageous speed. Compute also the velocity

with which the water enters the wheel.

ART. 177. DESIGN OF REACTION TURBINES

The design of an outward- or inward-flow turbine for a given

head and discharge includes the determination of the dimensions

r, ri, d, di, and the angles a, ft, and <f>. These may be selected in

very many different ways, and the formulas of the last article

furnish a guide how to make a selection so as to secure a high

degree of efficiency.

First, it is seen from (176) 6 that the approach angle a and the

exit angle ft should be small, but that, as in other wheels, ft has

a greater influence than a. However, ft must usually be greater

for an inward-flow than for an outward-flow wheel in order to

make the orifices of exit of sufficient size. For the entrance angle

4> a good value is 90, and in this case the velocity u is always that

due to one-half the head, as seen from (176) 4 . The radii r and r t

.
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should not differ too much, as then the frictional resistance of the

flowing water and the moving wheel would be large. It is also

seen that the efficiency is increased by making the exit depth di f

greater than the entrance depth d, but usually these cannot greatly

differ, and are often taken equal.

Secondly, it is seen that the dimensions and angles should be

such as to satisfy the formula (176) 5, since if this be not the case

losses due to impact at entrance will occur which will render the

other formulas of little value.

As a numerical illustration let it be required to design an out-

ward-flow reaction turbine which shall use 120 cubic feet per second

under a head of 18 feet and make 100 revolutions per minute. Let

the entrance angle <#> be taken at 90, then from formula (176)4 the

advantageous velocity of the inner circumference is

u = V32.i6X 18 = 24.06 feet per second,

and hence the inner radius of the wheel is

r= 6oX24 - 6 =
2.298 feet.

27TX 100

Now let the outer radius of the wheel be 3 feet, and also let the

depths d and di be equal ;
then from (176) 6

jM_(i*2Y_ 0.5866
tarm \3.ooo/

If the approach angle a be taken as 30, the value of the exit angle

ft to satisfy this equation is 19 48', and from (176)6 the hydraulic

efficiency is 0.899. If> however, be 24, the value of ft is ft 15 08'

and the hydraulic efficiency is 0.941 ;
these values of a and ft will

hence be selected.

The depth d is to be chosen so that the given quantity of water

may pass out of the guide orifices with the proper velocity. This

velocity is, from (176) 4,

VQ = 24.o6/cos 24 =
26.34 feet per second;

and hence the area of the guide orifices should be

OQ = 120/26.34
=

4.556 square feet,

from which the depth of the orifices and wheel is

d = 4.556/2717 sin 24 = 0.776 feet.
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As a check on the computations the velocities V and K,, with the cor-

responding areas a and a
, may be found, and d be again deten.

in two ways. Thus,

V = flo sin 24 =
10.71 Vi = i

=
iifi/r

=
31.42 feet per second.

a = 120/10.71 = 11.204 ai = 120/31.42 = 3.820 square f<

d = n.204/27rr = 0.776 di 3.82o/2irri sin =
0.776 feet.

And this completes the preliminary design, which should now In

vised so that the several areas may not include the thickness of the

guides and vanes (Art. 178).

Although the hydraulic efficiency of this reaction turbine is 94

percent, the practical efficiency will probably not exceed 80 percent.

About 2 percent of the total work will be lost in axle friction. The

losses due to the friction of the water in passing through the guides

and vanes, together with that of the wheel revolving in water, and per-

haps also a loss in leakage, will probably amount to more than one-

tenth of the total work. All of these losses influence the advantageous

velocity, so that a test would be likely to show that the highest effi-

ciency would obtain for a speed somewhat less than 100 revolutions

per minute.

Prob. 177. Design an inward-flow reaction turbine which shall use

120 cubic feet of water per second under a head of 18 feet while making
100 revolutions per minute, taking < = 68, a = 10, and ft

= 21. Also

taking </>
= 75, a = 15, and ft

= 20.

ART. 178. GUIDES AND VANES

The discussions in the last two articles have neglected the

thickness of the guides and vanes. As these, however, occupy

a considerable space, a more correct investigation will here be

made to take them into account. Let / be the thickness of a

guide and n their number, t\ the thickness of a vane and n\ their

number. Then the areas a , a, and ai perpendicular to the direc-

tions of fl
, V, and V\ are strictly

a =
(27rr sina -/)</ a = (27rr sm<f>

ai(27rrisin-ni/i)</i

and the expressions for the discharge in (176)i are

= a&Q = aV = a\Vi
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and, since FI equals HI, these give

UI = OQ ___ a r

vQ ai vQ a\r\

also, the necessary condition in (176) 5 becomes

sin(</> a) _ aQr

sin</> a\r\

and the greatest hydraulic efficiency of the turbine when running
at the advantageous speed is given by

ri
2 sin (<ft a) sin2

!/?
e I 2

;

r sin <j> cos

in which, of course, sin($ )/ sin <t> may be replaced by its

equivalent a&la\r\. The advantageous speed is, as before, given

by formula (176) 4

To discuss a special case, let the example of the last article be

again taken. An outward-flow turbine is to be designed to use 1 20

cubic feet of water under a head of 18 feet while making 100 revo-

lutions per minute, the gate being fully opened. The preliminary

design has furnished the values r = 2.298 feet, ^ = 3.000 feet, d = d l
=

0.766 feet, < = 90, a = 24, ft
=

15 08'. It is now required to

revise these so that 24 guides and 36 vanes maybe introduced. Each

of these will be made one-half an inch thick, but on the inner circum-

ference of the wheel the vanes will be thinned or rounded so as to pre-

vent shock and foam that might be caused by the entering water

impinging against their ends (see Fig. 182e). If the radii and angles

remain unchanged, the effect of the vanes will be to increase

the depth of the wheel, which is now 0.702 feet wide and 0.776 feet

deep. As these are good proportions, it will perhaps be best to keep
the depth and the radii unchanged, and to see how the angles and the

efficiency will be affected.

Since the vanes are to be thinned at the inner circumference,

the area a is unaltered and its value is simply 2irrd sin<. Hence

<f> remains 90 and V is unchanged. This requires that the area a

should remain the same as before. The area a\ is also the same, as

its value is q/u\. Accordingly the equations result

4.556 = (2 irr sina 24/) d 3.820 = (2 irr\ sin 36/1) d\



Downward-flow Turbim-- Art. 179 471

in which a and ft are alone unknown. Inserting the numerical values

and solving, a = 28 26' and ft = 19 55', lx>th being increased by
about 4^. The efficiency is now found to be 0.898, a decrease of

0.043, due t tne introduction of the guides and vanes.

The efficiency may be slightly raised by making the outer depth

di greater than the inner depth d. For instance, let dv 0.8 16

while d remains 0.776 ;
then ft is found to be 19 06', and e 0.906.

But another way is to thin down the vanes at the exit circumference

and thus maintain the full area a\ with a small angle ft. If this be

done in the present case d1 may be kept at 0.776 feet, ft be reduced

to about 16, and the efficiency will then be about 0.92 or 0.93.

No particular curve for the guides and vanes is required, but it

must be such as to be tangent to the circumferences at the designated

angles. The area between two vanes on any cross-section normal

to the direction of the velocity should also not be greater than the an-.i

at entrance ;
in order to secure this vanes are frequently made much

thicker at the middle than at the ends (see Fig. 182e).

Prob. 178. Find the advantageous speed and the probable discharge

and power of the turbine designed above when under a head of 50 feet.

ART. 179. DOWNWARD-FLOW TURBINES

Downward- or parallel-flow turbines are those in which the

water passes through the wheel without changing its distance from

the axis of revolu-

tion. In Fig. 179a V 7 ~i
~J

~1 ~r~

is a semi-vertical \ I
^
S S S S

section of the guide

and wheel passages,

and also a develop- Fig. 170,/.
u
^ST-^*

ment of a portion

of a cylindrical section showing the inner arrangement. Tin-

formula for the discharge can be adapted to this by making

HI = M. In this turbine there is no action of centrifugal 1.

so that the relative exit velocity V l is equal to the relative en-

trance velocity V.

The great advantage of this form of turbine is that it can be

set some distance above the tail race and still obtain the power
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due to the total fall. This distance cannot exceed 34 feet, the

height of the water barometer, and usually it does not exceed

25 feet. Fig. 1796 shows in a dia-

grammatic way a cross-section of the

penstock P, the guide passages G,

the wheel W, and the air-tight draft

tube T, from which the water es-

capes by a gate E to the tail race.

The pressure-head HI on the exit

orifice is here negative, so that the

air pressure equivalent to this head

is added to the water pressure in

the penstock, and hence the discharge

through the guides occurs a.s if the

wheel were set at the level of the tail

race. Strictly speaking, a vacuum,
more or less complete, is formed just

below the wheel into which the water

drops with a low absolute velocity,

having surrendered to the wheel

nearly all its energy. Draft tubes

are also often used with inward-flow turbines when these are set

above the tail race.

Let h be the total head between the water levels in the head and

tail races, h$ the depth of the entrance orifices of the wheel below the

upper level, hi the vertical height of the wheel, and h^ the height of the

exit orifices above the tail race; so that h = //o-f/^H-/^- Let H and

Hl be the heads which measure the absolute pressures at the entrance

and exit orifice of the wheel, and ha the height of the water barometer.

Let VQ be the absolute velocity with which the water leaves the guides
and enters the vanes, and V and Vl the relative velocities at entrance

and exit. Then from the theorem of energy in steady flow (Art. 31),

Fig. 1796

Adding these two equations there results
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But A HI is equal to //j, and hence

This formula is the same as (175)! if u be made equal to HI, and hence

all the formulas of the last three articles apply to the downward-flow

reaction turbine by making equal the velocities u and uh as also the

radii r and rv

Let r be the mean radius and u the mean velocity of the entrance

and exit orifices of the wheel, let d be the width of the entrance ori:

and d l that of the exit orifices. Let a be the approach angle which the

direction of the entering water makes with that of the velocity ,

or the angle which the guides make with the upper plane of the wheel

(Fig. 179fl) ;
let < be the entrance angle which the vanes make with

that plane, and /8 the acute exit angle which they make with the lower

plane. Then the values of the advantageous velocity u and the enter-

ing velocity v are

Igh sin (fr
- j Vo=

/

\ cossin< \<cosa sin (^ a)

and the necessary relation between the angles of the vanes and the

dimensions of the wheel is

sin (<fr <*) _ g*sin oo

sin/? a\

while the hydraulic efficiency of the turbine is

a\ cosa

To these equations is to be added the condition that the pressure-

head Hi cannot be less than that of a vacuum, and on account of air

leakage it must be practically greater ;
thus

//! > o and //2 < A

that is, the height of the wheel orifices above the tail race must be

less than the height of the water barometer.

_As an example of design, let < = 90 and a = 30. Then u *

Vg&, or the velocity due to one-half the head
;
and r = VjfA, or a

velocity due to two-thirds of the head. From the above formula*,

taking dl
=

frf, the value of ft is 22 38' and the efficiency is found to

be 0.92. This value will be lowered by the introduction of guides and
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vanes, as well as by friction, so that perhaps not more than 0.80 will

be obtained in practice.

Prob. 179. A downward-flow turbine with draft tube has its exit

orifices 7.5 feet above the level of the tail race, and it uses 87 cubic feet

of water per second under a head of 25 feet. What horse-power will this

turbine deliver when its efficiency, as measured by the friction brake, is 76

percent ?

ART. 180. IMPULSE TURBINES

Whenever a turbine is so arranged that the channels between

the vanes are not fully filled with water, it ceases to act as a

reaction turbine and becomes an impulse turbine. A turbine

set above the level of the tail race becomes an impulse turbine

when the gate is partially lowered, unless the gates are arranged
so as to cover the exit orifices instead of being, as usual, in front

of the entrance orifices.

The velocity with which the water leaves the guides in an

impulse turbine is simply 2Vg/? ,
where h is the head on the

guide orifices. The rules and formulas in Art. 168 apply in all

respects, and for a well-designed wheel the entrance angle <f> is

double the approach angle ,
the advantageous speed and corre-

sponding hydraulic efficiency are

2 COS2

while the discharge is q
= a ^/2gh ,

and the work of the turbine

per second is k = wqh e.

As an example, suppose that the reaction turbine designed
in Art. 177 were to act as an impulse turbine, the angles a and

ft remaining at 24 and 15 08', and the radii r and r\ being 2.298

and 3.000 feet. It would then be necessary that </> should be

48 instead of 90 in order to secure the best results. Under a

head of 18 feet the velocity of flow from the guides would be

34.02 feet per second instead of 26.34. The velocity of the inner

circumference would be 18.63 ^eet Per second instead of 24.06,

so that the number of revolutions per minute would be about 77

instead of 100. The efficiency would be 0.96, or almost exactly
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the same as before. If, however, the angle were to remain 90,
the efficiency of the turbine would be materially lowered, d
then the water could not enter tangentially upon the v;.

and a loss in energy of the entering water due to the impact
would necessarily result.

Impulse turbines revolve more slowly than reaction turbine^

under the same head, but the relative entrance velocity V is

greater, and hence more energy is liable to be spent in shock and

foam. In impulse turbines the entrance angle <f> should be double

the approach angle ,
but in reaction turbines it is often greater

than 3, and its value depends upon the exit angle #; hence the

vanes in impulse turbines are of sharper curvature for the same

values of and #. In impulse turbines the efficiency is not low-

ered by a partial closing of the gates, whereas the sudden enlarge-

ment of section causes a material loss in reaction turbines. The

advantageous speed of an impulse turbine remains the same for

all positions of the gate, but with a reaction turbine it is very much
slower at part gate than at full gate. For many kinds of machin-

ery it is important to maintain a constant speed for different

amounts of power, and with a reaction turbine this can only be

done by a great loss in efficiency. When the water supply is low,

the impulse turbine hence has a marked advantage in efficiency.

A further merit of the impulse turbine is that it may be arranged

so that water enters only through a part of the guides, while this

is impossible in reaction turbines. On the other hand, reaction

turbines can be set below the level of the tailrace or above it.

using a draft tube in the latter case, and still secure the power
due to the total fall, whereas an impulse turbine must always

be set above the tail-race level and loses all the fall betu

that level and the guide orifices.

Prob. 180a. Compare the advantageous speeds of impulse and read ion

turbines when the velocity of the water issuing from the guide orifices is

the same.

Prob. 1806. Design an outward-flow impulse turbine which shall use

120 cubic feet of water per second under a head of 18 feet and make 100 :

olutions per minute. Compare the dimensions and angles with those of

the reaction turbine designed for the same data in Art. 177.
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ART. 181. SPECIAL DEVICES

Many devices to increase the efficiency of reaction turbines,

particularly at part gate, have been proposed. In the Fourney-
ron turbine a common plan is to divide the wheel into three parts

by horizontal partitions between the vanes, so that these are

completely filled with water when the gate is either one-third

or two-thirds closed (see Fig. lS2d). The surface exposed to

friction is thus, however, materially increased at full gate.

The Boyden diffuser is another device used with outward-flow

reaction turbines. This consists of a fixed wooden annular

frame D placed around the wheel W, through which the water

must pass after exit from the wheel. Its width is about four or

five times that of the wheel, and

at the outer end its depth becomes

about double that of the wheel.

The effect of this is like a draft

tube, and although the absolute

velocity of the water when issuing

from the wheel is greater than be-

fore, the absolute velocity of the

water coming out of the diffuser is less, and hence a greater

amount of energy is imparted to the turbine. It has been

shown above that the efficiency of a reaction turbine is increased

by making the exit depth di greater than the entrance depth d,

and the fixed diffuser produces the same result. By the use of

this diffuser Boyclen increased the efficiency of the Fourneyron
reaction turbine several percent.

The pneumatic turbine of Girard was devised to overcome

the loss in reaction turbines due to a partial closing of the gate.

The turbine was inclosed in a kind of bell into which air could

be pumped, thus lowering the tail-water level around the wheel.

At part gate this pump is put into action, and as a consequence
the air is admitted into the wheel, and the water flowing through
it does not fill the spaces between the vanes. Hence the action

becomes like that of an impulse turbine, and the full efficiency

is maintained, although power is lost in compressing the air.
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At a high stage of the stream, when water flows to waste

the dam, backwater usually lessens the available fall and
|><>

To increase that fall and power, Herschel in 1908 devised and
tested at the Holyoke Testing Flume the plan of connecting th<

lower end of the turbine draft tube to a chamber wherein a partial

vacuum is produced by causing part of the waste to flow through

a tube shaped like the Yenturi meter, suitable connections b

made between the specially designed throat of the tube and the

vacuum chamber. This device, called
"
the fall increaser,"* gi

greater available power at high water stages, since the vacuum

head //i is added to the head // between the upper and lower water

levels, and since the discharge through the turbine is also increased.

The screw turbine consists of one or two turns of a helicoidal sur-

face around a vertical shaft, the screw being inclosed in a cylindrical

case. At a point of entrance the downward pressure of the water can

be resolved into two components, a relative velocity V parallel to the

surface and a horizontal velocity u which corresponds to the velocity of

the wheel. At the point of exit it can be resolved in like manner into

Vi and w.. But, as in other cases, the condition for high efficient

"i = J
r

i. and since the water moves parallel to the axis, //,= //.

Applying the general formula of Art. 175, it is seen that this can only

occur when the head h is zero or when the velocity u is infinite. Tin

screw turbine is hence like a reaction wheel, and high efficiency can

never practically be obtained.

Prob. 181. Consult Ruhlmann's Maschinenlehre, vol. i, pp. 360-4-^.

and describe a scheme for "ventilating" a turbine in order to increase its

efficiency.

ART. 182. THE NIAGARA TURBINES

A number of turbines have been installed at Niagara Falls,

N.Y., for the utilization of a portion of the power of the great

falls. Those to be here briefly described are the ten large wheels

designed by Faesch and Picard, of Geneva, Switzerland, and

erected from 1894 to 1000 for the Niagara Falls Power Company.

The entire plant is to include twenty-one twin outward-flow

reaction turbines, each of about 5000 horse-power. It is located

* Harvard Engineering Journal. June, 1908.
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about ij miles above the

American fall, where a canal

leads water from the river

to the wheel pit. The water

is carried down the pit

through steel penstocks to

the turbines, which are

placed 136 feet below the

water level in the canal.

After passing through the

wheels the waste water is

conveyed to the river below

the American fall by a tun-

nel 7000 feet long.*

Fig. 1820 shows a cross-

section of the wheel-pit,

with an end view of a pen-

stock, wheel case, and shaft.

Fig. 1826 exhibits part of a

longitudinal section of the

wheel pit and a side view

of two of the penstocks,

with the inclosing cases and

shafts of the turbines. These

figures show a rock-surface

wheel pit, but this surface

was later protected by a

brick lining having a thick-

ness of about 15 inches.

The width of the wheel pit

is 20 feet at the top and 16

feet at the bottom, and the

cylindrical penstock is 7^
feet in diameter. The shaft

of the turbine is a steel tube

Center Un&fTurbin

Fig. 182a.

*
Engineering News, 1892, vol. 27, p. 74, and 1893, vol. 29, p. 294.
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38 inches in diameter, built in three sections, and connected by
short solid steel shafts n inches in diameter which revolve in

bearings. At the

top of each shaft

is a dynamo for

, Vei' _>] generating the

electric power.

In Fig. lS2c

is shown a vertical

section of the

lower part of the

penstock, shaft,

and twin wheels.

The water fills the

casing around the

shaft, passes both

upward and
downward to the

guide passages,

marked G, through

which it enters

the two wheels,

causes them to

revolve, and then drops down to the tail race at the entrance

to the tunnel, which carries it away to the river. The gate for

regulating the discharge is seen upon the outside of the wheels.

Fig. lS2d gives a larger vertical section of the lower wheel

with the guides, shaft, and connecting members. The guide

passages, marked G, and the wheel passages, marked W, are

triple, so that the latter may be filled not only at full gate, but

also when it is one-third or two-thirds opened, thus avoiding the

loss of energy due to sudden enlargement of the flowing stream.

The two horizontal partitions in the wheel are also advantageous
in strengthening it. The inner radius of the wheel is 31! inches

and the outer radius is 37 J inches, while the depth is about 12

inches. In this figure the gates are represented as closed.

Fig. 182c.
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In Fig. 182e is shown a half-plan of one of the wheels, on a

part of which are seen the guides and vanes, there being 36 of

the former and 32 of the latter. The value of the approach an<jle

is 19 06', the mean value of the entrance angle </> is 110 40',

and the exit angle is 13 17!'. Although the water on leaving

the wheel is discharged into the air. the very small annul

between the guides and vanes, together with the decreasing
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between the vanes from the entrance to the exit orifices, insures

that the wheels act like reaction turbines for the three positions

of the gates corresponding to the three horizontal stages.

The average discharge through one of these twin turbines is

about 430 cubic feet per second, and the theoretic power due to

this discharge is 6645 horse-powers. Hence if 5000 horse-powers

be utilized, the efficiency is 75.2 percent. Under this discharge

the mean velocity in the penstock is nearly 10 feet per second,

but the loss of head due to friction in the penstock will be but a

small fraction of a foot. The pressure-head in the wheel case is

then practically that due to the actual static head, or closely

14 1 J feet upon the lower and 130 feet upon the upper wheel.

Although the penstock is smaller in section than generally

thought necessary for such a large discharge, the loss of head

that occurs in it is insignificant; and it will be seen in Fig.

182a to be connected with the head canal and with the wheel

case by easy curves, and that its section is enlarged in making
these approaches.

A test of one of these wheels, made in 1895, showed that 5498

electrical horse-powers were generated by an expenditure of 447.2

cubic feet of water per second under a head of 135.1. The effi-

ciency of the dynamo being 97 percent, the efficiency of the wheel

and approaches was 82 J percent. The water was measured,

when entering the penstock, by a current meter of the kind illus-

trated in Art. 40.

From formula (176)4 the advantageous velocity of the inner

circumference of the upper wheel, taking h = 130^ feet, is found

to be 68.88 feet per second, and that for the lower wheel, taking

h = 141^ feet, is found to be 71.73 feet per second. Perhaps
the mean of these, or 70.31 feet per second, closely corresponds
with the advantageous velocity for the two combined. The
number of revolutions per minute for the condition of maximum

efficiency is then closely 250. The absolute velocity of the water

when entering the wheel is about 66 feet per second, so that the

pressure-head in the guide passages of the upper wheel is nearly

66 feet. The mean absolute velocity of the water when leaving
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the wheels is about 19 feet per second, so that the loss due to this

is only about 4 percent of the total head.

The weight of the dynamo, shaft, and turbine is balanced,

when the wheels are in motion, by the upward pressure of tin-

water in the wheel case on a piston placed above the upper wl

The upper disk containing the guides is, for this purpose, per-

forated, so that the water pressure can be transmitted through

it. In Fig. lS2c these perforations can be seen, and the balancing

piston is marked B. The lower disk, on the other hand, is solid,

and the weight of the water upon it is carried by inclined rods

upward to the wheel case, which together with the penstock i^

supported upon several girders. At the upper end of the shaft i-

a thrust bearing to receive the excess of vertical pressure, which

may be either upward or downward under different conditions

of power and speed.

A governor is provided for the regulation of the speed, and this

is located on the surface near the dynamo. It is of the centrifuga 1-

bali type, and so connected with the main shaft and the turbine

gates that the latter are partially closed whenever from any

cause the speed increases. These gates are so set that the orifices

of the upper and lower wheels are not simultaneously closed, one

gate being in advance of the other by about the width of one

division stage. The revolving field magnets of the dynamo
serve as a fly-wheel for equalizing the speed. With this method

of regulation it is insured that the speed cannot increase more than

3 or 4 percent when 25 percent of the work is suddenly removal .

The above description refers to the ten turbines in wheel pit

No. 1. The illustrations are those of the wheels called un 1 '*,

which are installed in 1894 and 1895. Units 4 to 10 inclusive, installed

in 1898-1900, are of the same type except that both the penstock and

wheel case have cast-iron ribs on their sides which rest on ma

castings built into the masonry of the side walls. This arrangement

dispenses with the supporting girders shown in Figs. 182a-182f,

and gives much greater rigidity to both penstocks and wheels.

The excavation of a new wheel pit, called No. 2, was begun in 1896,

and the installation of units 11-21 was completed in 1003. These
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wheels have penstocks and shafting similar to those of units 1-1

but the wheels are of the Jonval type, the flow being inward and down-

ward. The wheel case has the form of a flattened sphere, the water

entering from one side and passing through the guides to a single

turbine 64 inches in diameter and 23.5 inches deep. After leaving the

wheel, the water passes to two draft tubes, each about 58 inches in

diameter, and is discharged near the invert of the tail race at an angle

of 45 to the horizontal axis of the wheel pit. The wheel case is sup-

ported on these two draft tubes as on two legs, while the penstock

is supported on iron lugs in the same way as those of units 4-10.

By these draft tubes the head on the wheel is increased to 144 feet,

this being the difference from the water level in the head race to that

in the tail race. The balancing pistons are below the wheels, and are

supported from an independent pipe instead of from the penstock.

Each shaft is also supplied with an oil step-bearing, which is designed

to support, if necessary, the entire revolving weight at the normal

speed of 250 revolutions per minute.

Prob. 182:7. Compute the hydraulic efficiency of the turbines described

above. Compute the velocity v with which the water enters the lower wheel

and the velocity Vi with which it leaves the same when the speed is 250

revolutions per minute.

Prob. 1826. Compute the efficiency of a reaction wheel under a head of

3.5 meters when the radius of the exit orifices is 0.64 meters, the coefficient

of velocity 0.95, and the number of revolutions per minute is 130.

Prob. lS2c. Design an outward-flow reaction turbine which shall use 8

cubic meters of water per second under a head of 12.4 meters, taking the en-

trance angle <f> as 90.

Prob. I82d. A dynamo delivering 4100 kilowatts has an efficiency of 97.5

percent, while the efficiency of the turbine is 81.3 percent and that of the

approaches to the turbine is 99.7 percent. The turbine is of the Jonval type,

and the difference between the levels of head and tail race is 14.4 meters.

How many cubic meters of water are used per second ?

Prob. 182e. Consult engineering periodicals and describe other large

power plants for the development of electrical energy which have been in-

stalled at Niagara Falls, especially that of the Canadian Niagara Power

Company and that of the Ontario Power Company.
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CHAPTER 15

NAVAL HYDROMECHANICS

ART. 183. GENERAL PRINCIPLES

In this chapter is to be discussed in a brief and elementary
manner the subject of the resistance of water to the motion of

vessels, and the general hydrodynamic principles relating to their

propulsion. The water may be at rest and the vessel in motion,

or both may be in motion as in the case of a boat going up or

down a river. In either event the velocity of the vessel rela

to the water need only be considered, and this will be called v.

The simplest method of propulsion is by the oar or paddle ;
then

come the paddle wheel, and the jet and screw propellers. The
action of the wind upon sails will not be here discussed, as it is

outside of the scope of this book.

The unit of linear measure used on the ocean is generally

the nautical mile, while one nautical mile per hour is called a

knot. One nautical mile is about 6080 feet, so that knots may
be transformed into feet per second by multiplying by 1.69, and
feet per second may be transformed into knots by multiplying

by 0.592. On rivers the speed is estimated in statute miles per

hour, and the corresponding multipliers will be 1.47 and 0.682.

One kilometer per hour equals 0.621 miles per hour or 0.91 feet

per second. On the ocean the weight of a cubic foot of water is

to be taken as about 64 pounds (it is often used as 64.32 pounds,

so that the numerical value is the same as 2g), and in rivers at

62.5 pounds.

The speed of a ship at sea was formerly roughly measured

by observations with the log, which is a triangular piece of wood

attached to a cord which is divided by tags into lengths of about

5of feet. The log being thrown into the water, it remains sta-
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tionary, the ship moves away from it, and the number of tags

run out in half a minute is counted
;

this number is the same as

the number of knots per hour at which the ship is moving, since

5of feet is the same part of a knot that a half minute is of an hour.

The patent log, which is a small self-recording current meter,

drawn in the water behind the ship, is, however, now generally

used, this being rated at intervals (Art. 40). In experimental

work more accurate methods of measuring the velocity are neces-

sary, and for this purpose the boat may run between buoys
whose distance apart has been found by triangulation from meas-

ured bases on shore.

The Pitot tube has recently been applied to the determina-

tion of the velocity of a ship through the water. By the use in

connection with this tube of a recording mechanism similar to

that described in Art. 38 for the Venturi meter it would seem

possible to automatically record on dials both the speed through

the water as well as the total number of miles passed over. By
the use of a chart an autographic record of variations in the speed

could also be kept. Practical difficulties in the way of keeping

the mouths of the Pitot tubes free from obstructions have already

been to a certain extent overcome.*

When a boat or ship is to be propelled through water, the

resistances to be overcome increase with its velocity, and conse-

quently, as in railroad trains, a practical limit of speed is soon

attained. These resistances consist of three kinds : the dynamic

pressure caused by the relative velocity of the boat and the water,

the frictional resistance of the surface of the boat, and the wave

resistance. The first of these can be entirely overcome, as in-

dicated in Art. 155, by giving to the boat a "fair" form; that is,

such a form that the dynamic pressure of the impulse near the

bow is balanced by that of the reaction of the water as it closes

in around the stern. It will be supposed in the following pages

that the boat has this form, and hence this first resistance need

not be further considered. The second and third sources of

resistance will be discussed later.

*
Engineering News, May 4, 1911.
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The total force of resistance whi. when a ves-

propelled with the velocity v can be aso.Ti.iino I by drawing
it in tow at the same velocity, and placing on the tow line a dy-
namometer to register the tension. An experiment by Froude

on the Greyhound, a steamer of 1157 tons, gave for the total

resistance the following figures :

*

Speed in knots, 4 6 8 10 12

Resistance in tons, 0.6 1.4 2.5 4.7 9.0

which show that at low speeds the resistance varies about as

the square of the velocity, and at higher speeds in a faster ratio.

For speeds of 15 to 25 knots, the usual velocity of ocean stean

the law of resistance is not so well known, but as an approxima-
tion it is usually taken as varying with the square of the velocity.

Prob. 183. What horse-power was expended in the above test of the Grey-
hound when the speed was 1 2 knots per hour ?

ART. 184. FRICTIONAL RESISTANCES

When a stream or jet moves over a surface, its velocity is

retarded by the frictional resistances, or if the velocity be main-

tained uniform, a constant force is overcome. In pipes, conch:

and channels of uniform section the velocity is uniform, and con-

sequently each square foot of the surface or bed exerts a constant

resisting force, the intensity of which will now be approximately

computed. This resistance will be the same as the force required

to move the same surface in still water, and hence the results

will be directly applicable to the propulsion of ships.

Let F be the force of frictional resistance per square foot of

surface of the bed of a channel, p its wetted perimeter, / its length,

h its fall in that length, a the area of its cross-section, and ; t la-

mean velocity of flow. The force of friction over the entire sur-

face then is Fpl, and the work per second lost in friction is

Fpfa. The work done by the water per second is Wh or u- :

Equating these two expressions for the work, there results

F =
w(a/p)(h/l) = wrs

* Thearle.'s Theoretical Naval Architecture (London, 1876), p. 34?-
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in which r is the hydraulic radius and 5 the slope of the water

surface. Now inserting for rs its value from formula (113),

there results

in which w is the weight of a cubic foot of water and c is the co-

efficient in the Chezy formula, the values of which are given in

Chap. 9 and the accompanying tables. Inasmuch as the

velocities along the bed of a channel are somewhat less than the

mean velocity v, the values of F thus determined will probably

be slightly greater than the actual resistance.

For smooth iron pipes the following are computed values

of the frictional resistance in pounds per square foot of surface :

Velocity, feet per second = 2 4 6 10 15

for i foot diameter F = 0.023 0.080 0.17 0.43 0.92

for 4 feet diameter F = 0.015 0.053 o- 11 - 2& -59

These figures indicate that the resistance is subject to much
variation in pipes of different diameters; it is not easy to con-

clude from them, or from formula (113), what the force of re-

sistance is for plane surfaces over which water is moving.

Experiments made by moving flat plates in still water so

that the direction of motion coincides with the plane of the sur-

face have furnished conclusions regarding the laws of fluid fric-

tion similar to those deduced from the flow of water in pipes. It

is found that the total resistance is approximately proportional

to the area of the surface, and approximately proportional to

the square of the velocity. Accordingly the force of resistance

per square foot may be written

F=fo*, (184)

in which v is the velocity in feet per second and / is a number

depending upon the nature of the surface. The following are

average values of / for large surfaces, as given by Unwin :

*

Varnished surface, / = 0.00250
Painted and planed plank, / = 0.00339
Surface of iron ships, / = 0.00351
Fine sand surface, / = 0.00405
New well-painted iron plate, / = 0.00473

*
Encyclopedia Britannica, Qth Ed., vol. 12, p. 483; nth Ed., vol. 14, p. 57.
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Undoubtedly the value of / is subject to variations with the

velocity, but the experiments on record are so few that the law
and extent of its variation cannot be formulated. It should,

however, be remarked that the formulas and constants here given
do not apply to low velocities, for the reasons given in Art. 124.

At the same time they are only approximately applicable t high
velocities. A low velocity of a body moving in an unlimited

stream may be regarded as i foot per second or less, a high veloc-

ity as 25 or 30 feet per second.

It may be noted that the above-mentioned experiments indir.it r

that the value of F is greater for small surfaces than for lar^-ont >.

For instance, a varnished board 50 feet long gave / = 0.00250, while

one 20 feet long gave/ = 0.00278, and one 8 feet long gave/ = 0.00325,
the motion being in all cases in the direction of the length. The re-

sistance is the same whatever be the depth of immersion, for the fric-

tion is uninfluenced by the intensity, of the static pressure. Thi> U

proved by the circumstance that the flow of water in a pipe is found to

depend only upon the head on the outlet end, and not upon the pres-

sure-heads along its length.

The frictional resistance of a boat or ship may be roughly esti-

mated by taking 0.004^ and multiplying it by the immersed area. For

instance, if this area be 8000 square feet, the frictional resistance at

a velocity of 10 feet per second is 3200 pounds, but at a velocity of 20

feet per second it is 12 800 pounds; the horse-powers needed to over-

come these resistances are 58 and 464, respectively. To these must

be added the power necessary to overcome the friction of the air and

that wasted in the production of waves.

The above discussion refers to the case of boats moving in the .

and lakes or in a stream of large width and depth. In a canal the re-

sistance is much greater, and it depends upon the ratio of the n

section of the canal to that of the immersed portion of the boat. It de-

pends also on the depth of the water. The "drag
"

of a ship, in

shoal water is very pronounced. For some experiments on the

tion of vessels consult.* When the width of the canal is about live

times that of the boat and the area of its cross-section about i

times that of the boat, the resistance is but slightly greater than in an

*
Transactions American Society of Naval Architect* and M

Kn.nineers, vol. 17, 1909.
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unlimited stream. For smaller ratios the resistance rapidly increases,

and when two boats pass each other in a small canal, the utmost

power of the horses may be severely taxed. The reason for this in-

creased resistance appears to be largely due to the fact that the

velocity of the water relative to the boat increases with the diminu-

tion of the cross-section of the canal. Thus, if a and A be the areas

of the cross-section of the canal and of the immersed part of the

boat, the effective area of the water cross-section is a A, and the

water flowing backward through this area must have a higher rela-

tive velocity as A increases. The value of F given by formula (184)

is accordingly increased to/^/(i (A /a))
2
.

Prob. 1840. What horse-power is required to overcome the frictional re-

sistance of a boat moving at the rate of 9 knots per hour when the area of its

immersed surface is 320 square feet ?

Prob. 1846. A canal has a cross-section of 360 square feet, while that of

a canal boat is 60 square feet. Show that when two boats pass each other,

the resistance of each is increased about 60 percent.

ART. 185. WORK REQUIRED FOR PROPULSION

When a boat or ship moves through still water with a velocity

v, it must overcome the pressure due to impulse of the water and

the resistance due to the friction of its surface on the water and

air. If the surface be properly curved, there is no resultant

pressure due to impulse, as shown in Art. 155. The resistance

caused by friction of the immersed surface on the water can be

estimated, as explained above. If A be the area of this surface

in square feet, the work per second required to overcome this

resistance is k = AFv=JAv* (185)

The work, and hence the horse-power, required to move a boat

accordingly varies approximately as the cube of its velocity. By
the help of the values of / given in the last article an approxi-

mate estimate of the work can be made for particular cases.

The resistance of the air, which in practice must be considered,

will be here neglected.

To illustrate this law let it be required to find how many tons

of coal will be used by a steamer in making a trip of 3000 miles

in 6 days, when it is known that 800 tons are used in making
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the trip in 10 days. As the power used is proportional t..

amount of coal, and as the distance tra \eled per day in Un-

cases are 500 miles and 300 miles, the law gives 77480 -
(5/3)*,

whence T = 2220 tons. By tin increased speed the expert*
fuel is increased 277 percent, while the time is reduced 40 j

cent. If the value of wages, maintenance, interest, etc., saved

on account of the reduction in time, will balance the extra expense
for fuel, the increased speed is profitable. That such a compel
tion occurs in many instances is apparent from the constant elY-

to reduce the time of trips of passenger steamers.

When a boat moves with the velocity v in a current which has

a velocity u in the same direction, the velocity of the boat rel

to the water is v u, and the resistance is proportional to (o
-

and the work to (v u)
3

. If the boat moves in the opposite

direction to the current, the relative velocity is v + u, and of

course v must be greater than u or no progress would be made.

In all cases of the application of the formulas of this article and

the last, v is to be taken as the velocity of the boat relative to the

water.

Another source of resistance to the motion of boats and -1.

the production of waves. This is due in part to a different level of the

water surface along the sides of the ship due to the variation in static

pressure caused by the velocity, and in part to other causes. I

plain that waves, eddies, and foam cause energy to be dissipated in heat ,

and that thus a portion of the work furnished by the engines of the

boat is lost. This source of loss is supposed to consume from 10 to 40

percent of the total work, and it is known to increase with the ve-

locity. On account of the uncertainty regarding this resistance, as

well as those due to the friction of the water and air, practical compu-
tations on the power required to move boats at given velocities can

only be expected to furnish approximate results.

The investigations of Rankine on this difficult subject led to tlu-

conclusion announced in 1858 in the anagram (200, 46, 6r, <x/, 34*% 8/.

4g, i6//, io/, s/, 3W, I5, 140, 4p, 3?, I4r, 135, 2$/, 4

The meaning of this anagram was published in 1861 : "The resistance

of a sharp-ended ship exceeds the resistance of a current of water of

*
Philosophical Magazine, September, 1858.



492 Chap. 15. Naval Hydromechanics

the same velocity in a channel of the same length and mean girth by a

quantity proportional to the square of the greatest breadth divided by
the square of the length of the bow and stern.

"

Prob. 185. Compute the horse-power required to maintain a velocity of

18 knots per hour, taking A = 7473 square feet and/= 0.004.

ART. 186. THE JET PROPELLER

The method of jet propulsion consists in allowing water to

enter the boat and acquire its velocity, and then to eject it back-

wards at the stern by means of a pump. The reaction thus pro-

duced propels the boat forward. To investigate the efficiency

of this method, let W be the weight of water ejected per second,

V its velocity relative to the boat, and v the velocity of the boat

itself. The absolute velocity of the issuing water is then V v,

and it is plain without further discussion that the maximum

efficiency will be obtained when this is o, or when V =
v, as then

there will be no energy remaining in the water which is propelled

backward. It is, however, to be shown that this condition can

never be realized and that the efficiency of jet propulsion is low.

The effective work which is exerted on the boat by the reaction

of the issuing water is

g

and the work lost in the absolute velocity of the water is

The sum of these is the total theoretic work, or

F2
7I
2

K = W-

Therefore the efficiency of jet propulsion is expressed by

e= k___

K V + v

This becomes equal to unity when v = V as before indicated, but

then it is seen that the work k becomes o unless W is infinite. The
value of W is waV, if a be the area of the orifices through which
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,

;

the water is ejected ;
and hence in order to make e unity and at

the same time perform work it is necessary that either V or a

should be infinity. The jet propeller is therefore like a reaction

wheel (Art. 172), and it is seen upon comparison that the formula

for efficiency is the same in the two cases.

By equating the above value of the useful work to that es-

tablished in the last article there is found

and if this be solved for F, and the resulting value be substituted

in the formula for e, it reduces to

which again shows that e approaches unity as the ratio of a to A
increases. The area of the orifices of discharge must hence be

very large in order to realize both high power and high efficiency.

For this reason the propulsion of vessels by this method has not

proved economical, although in the case of the boat Waterwitch.

built in England about 1860, a fair speed was attained. In natun-

the same result is seen, for no marine animal except the cuttle-

fish uses this principle of propulsion. Even the cuttle-fish cannot

depend upon his jet to escape from his enemies, but for this relies

upon his supply of ink with which he darkens the water about

him.

Prob. 186. Compute the velocity and efficiency of a jet propeller driven

by a i -inch nozzle under a pressure of 150 pounds per square inch when A -

1000 square feet and/= 0.004. Compute also the efficiency whea the dian

of the nozzle is 3 inches.

ART. 187. PADDLE WHEELS

The method of propulsion by rowing and paddling is well

known to all. The power is furnished by muscular energy within

the boat, the water is the fulcrum upon which the blade of th

oar acts, and the force of reaction thus produced is transmitted

to the boat and urges it forward. If water were an unyielding

substance, the theoretic efficiency of the oar should be unity, or,
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as in any lever, the work done by the force at the rowlock should

equal the work performed by the motive force exerted by the

man on the handle of the oar. But as the water is yielding,

some of it is driven backward by the blade of the oar, and thus

energy is lost.

The paddle or side wheel so extensively used in river naviga-

tion is similar in principle to the oar. The power is furnished by
motor within the boat, the blades or vanes of the wheel tend to

drive the water backward, and the reaction thus produced urges

the boat forward. On first thought it might be supposed that

the efficiency of the method would be governed by laws similar

to those of the undershot wheel, and such would be the case if

the vessel were stationary and the wheel were used as an apparatus

for moving the water. In fact, however, the theoretic efficiency

of the paddle wheel on a boat is much higher than that of the

undershot motor.

The work exerted by the steam-engine upon the paddle wheels

may be represented by PV, in which P is the pressure produced

by the vanes upon the water, and V is their velocity of revolution
;

and the work actually imparted to the boat may be represented

by Pv, in which v is its velocity with respect to the water. Ac-

cordingly the efficiency of the paddle wheel, neglecting losses

due to foam and waves, is

e= ?=
in which vi is the difference V v, or the so-called "slip." If

the slip be o, the velocities V and v are equal, and the theoretic

efficiency of the wheel is unity. The value of V is determined

from the radius r of the wheel and its number of revolutions

per second
;

thus V = 2irrn.

On account of the lack of experimental data it is difficult to give

information regarding the practical efficiency of paddle wheels con-

sidered from a hydromechanic point of view. Owing to the water

which is lifted by the blades, and to the foam and waves produced,

much energy is lost. They are, however, very advantageous on ac-

count of the readiness with which the boat can be stopped and re-
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versed. When the whirls art dri\ en by separate engines, as is s<>

times done on river boats, perfect control is n they can be

revolved in opposite directions whrn desired. I'addlr wheels with

feathering blades are more efficient than those with fixed radial ones,

but practically they are found to be cumbersome, and liable t.

out of order. In ocean navigation the screw has now almost entirely

replaced the paddle wheel on account of its higher efficiency.

Prob. 187. The radius of the blades of a paddle wheel is 10. =; feet and the

number of revolutions per minute is 24. If the efficiency is 75 percent, what

is the velocity of the boat in miles per hour ? Show that for this case the

slip is 33 percent of the velocity of the boat.

ART. 188. THE SCREW PROPELLER

The screw propeller consists of several helicoidal blades

attached at the stern of a vessel to the end of a horizontal shaft

which is made to revolve by steam power. The dynamic pressure

of the reaction developed between the water and the helicoidal

surface drives the vessel forward, the theoretic work of the screw

being the product of this pressure by the distance traversed.

The pitch of the screw is the distance, parallel to the shaft, be-

tween any point on a helix and the corresponding point on the

same helix after one turn around the axis, and the pitch may be

constant at all distances from the axis, or it may be variable.

If the water were unyielding, the vessel would advance a distance

equal to the pitch at each revolution of the shaft
; actually, the

advance is less than the pitch, the difference being called the

"slip." The effect thus is that the pressure P existing between

the helical surfaces and the water moves the vessel with the

velocity v, while the theoretic velocity which should occur is K,

being the pitch of the screw multiplied by the number of revolu-

tions per second. The work expended is hence PV or P(v +
if ri be the slip per second, and the work utilized is Pv. Ac-

cordingly the efficiency of screw propulsion is, approximately,

which is the same expression as before found for the paddle

wheel. Here, as in the last article, all the pressure exerted by the
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blades upon the water is supposed to act backward in a direc-

tion parallel to the shaft of the screw, and the above conclusion

is approximate because this is actually not the case, and also

because the action of friction has not been considered. The

practical advantage of the screw over the paddle wheel has been

found to be very great, and this is probably due to the circum-

stance that less energy is wasted in lifting the water and in form-

ing waves.

The pressure P which is exerted by the helicoidal blades upon
the water is the same as the thrust or stress in the shaft, and the

value of this may be approximately ascertained by regarding it

as due to the reaction of a stream of water of cross-section a

and velocity z>,
or p = wa fy + Vl ) v/g

Another expression for this may be found from the indicated

work k of the steam cylinders of the engines ;
thus

P =
k/v

Numerical values computed from these two expressions do not,

however, agree well, the latter giving in general a much less value

than the former.

In Art. 185 the work to be performed in propelling a vessel of

fair form having the submerged surface A was found to be

k =fAv
3

If the value of v is taken from this equation and inserted in the

expression for efficiency, there obtains

i+
which shows that e increases' as Vi, /, and A decrease, and as >k

increases. Or for given values of/ and A the efficiency decreases

with the speed.

It has been observed in a few instances that the "slip" vt is nega-

tive, or that 7, as computed from the number of revolutions and pitch

of the screw, is less than v. This is probably due to the circumstance

that the water around the stern is following the vessel with a velocity

z/, so that the real slip is V v + v' instead of 7 - v. The exist-

ence of negative slip is usually regarded as evidence of poor design.
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Twin screws are frequently used, and since these revolve in op-

posife directions, the vessel can be more readily controlled. Fig. 188
shows the position

of the twin screws

with respect to the

rudder. On some

of the recent high-

powered turbine-

driven steamships

two and three

screws all mounted

on a single shaft

Fig. 188.
have been em-

ployed. Two sets

of engines, and two shafts, one on each side of the rudder, are

often employed as in Fig. 188, but a different arrangement of the

shafts with respect to the hull of the ship permits the screw

be placed at considerable distances apart on the shafts, thus obtain-

ing a greater efficiency than in the case of the single screw.

Prob. 188. A steamer having a submerged surface of 30 ooo square feet

is propelled at 18 knots per hour by an expenditure of 6000 horse-powers. If

the pitch of the screw is 20 feet, its number of revolutions 1 20 per minute,

and / = 0.004, compute the number of lost horse-powers.

ART. 189. STABILITY OF A SHIP

In Art. 14 the general principles regarding the stability of a

floating body were stated, and these are of great importance in

the design of ships. The center of gravity is, of course, al\v

above the center of buoyancy, and the metacenter must be al>

the center of gravity in order to insure stability. The (list.:

between the metacenter and the center of gravity is denoted by

m, and if the body be inclined slightly to the vertical at the angle

6, the moment of the couple formed by the weight W of the body
which acts downward through the center of gravity and the up-

ward pressure W of the displaced water which acts through tin-

center of buoyancy is Wm tan#. Hence m tan0 y> a mea>

of the stability of the body, and the greater its value, the greater

is the tendency of the body to return to the upright position
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The metacentric height m cannot, however, be made very

great, for the rapidity of rolling increases with it. When a

floating body or ship is displaced from its vertical position, it

rolls to and fro with isochronous oscillations like those of a pendu-

lum, and the time of one oscillation from port to starboard is

given by the formula

in which r is the radius of gyration of the weight of the ship about

a horizontal longitudinal axis passing through its center of

gravity. Hence if m is large / is small and the ship rolls quickly;

B

Fig. 189a.

but if m is small / is large and the ship rolls slowly. The meta-

centric height m for ocean vessels usually ranges from 2 to 15

feet, about 6 or 8 feet being the usual value.

The determination of the values of m and r for a ship is a labo-

rious process, owing to its curved shape and the irregular distribution

of its weight and cargo. The process will here be applied to the simple
case of a rectangular prism of uniform density. Let h be the height

and b the breadth of the prism, and / its length perpendicular to the

plane of the drawing in Fig. 189a. When the prism is in the vertical

position, its depth of flotation is sh, if s is its specific gravity (Art. 13),

and this is also the length of the immersed portion of the axis AB
when the prism is inclined to the vertical at the angle 0, as in Fig.

1896. In the latter position the center of buoyancy D, being the

center of gravity of the displaced water, is easily located, and

b2 tan0 = .

2

are its coordinates with respect to B, x being measured normal and y
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parallel to A B. The distance m from the center of gravity R to the

metacenter M is then found to be

If m is positive, the metacenter is above the center of gravity and the

equilibrium is stable, for the moment IVm tan0 restores the prUm in

the vertical position ; if w is zero, the equilibrium is indifferent ; ii

is negative, the equilibrium is unstable, and the prism fall> over.

The square of the radius of gyration of the prism with n

to a horizontal longitudinal axis through G is its polar momei

inertia T
l

.rl(btf+hP) divided by its volume Ibit, whence r- =
,

For example, if // is 5 feet, b is 8 feet, and 5 is 0.5, the value

is 7.42 feet2 . The value of m to be used in the above formula for the

time of one roll is that obtained by making B equal to zero, since that

formula is strictly true only for small deviations from the vertical.

For the above data this value of m is +0.88 feet, the plus sign denoting

stability, and hence the time of one oscillation from port to starboard

is t = 1.61 seconds. It is seen that t can be increased either by in-

creasing r- or by decreasing m; since a decrease in m is unfavorable

to stability, it is usually preferable to increase r2 . For instance, in

loading a ship the cargo maybe placed along the sides rather than near

the middle of the hold, and this will increase r2
,
as the width of a ship

is always greater than its depth. The general rule to promote

bility and prevent quick rolling is hence to place the cargo as far as

possible from the center of gravity.

The above formula for m shows that the moment Jf'w tan0 which

restores the floating prism to the vertical increases with the angle B

up to a maximum value, then decreases, and when I) arrive> vertically

beneath (7, it becomes zero and the prism upsets. For the ca-e where

h =
$ feet, b = 8 feet, and s = 0.5, the value of m tan0 is o.oo feet

for B = o, 0.16 feet for B = 10, 0.37 feet for = 20, and 0.7;

feet for 0= 30 ;
at = 32 the corner of the prism becomes imm

so that the formula no longer holds, but up to this j)oint the moment

constantly increases. From the above expression for m tin- >olution

of Prob. 14 is readily made.

Prob. 189/;. An open rectangular wooden box caisson of length /. breadth

b, and depth d has sides of mean thickness b v and a bottom of thi

Deduce formulas for the metacentric height m and the squared radius of

gyration r2 . Compute m, r2
,
and / for a numerical case.
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AH- c

ART. 190. ACTION OF THE RUDDER

The action of the rudder in steering a vessel involves a prin-

ciple that deserves discussion. In Fig. 190 is shown a plan of

a boat with the rudder turned to the

starboard side, at an angle 6 with the

line of the keel. The velocity of

the vessel being z>,
the action of the

water upon the rudder is the same as

if the vessel were at rest and the water

in motion with the velocity v. Let W
be the weight of water which produces

dynamic pressure against the rudder, due to the impulse W '

v/g

(Art. 152). The component of this pressure normal to the rud-

deris

Fig. 190.

and its effect in turning the vessel about the center of gravity

C is measured by its moment with reference to that point. Let

b be the breadth of the rudder and d the distance CH between the

center of gravity and the' hinge of the rudder, then the lever arm

of the force P is

and accordingly the turning moment is

M = W(b sin<9+ d si

To determine that value of 6 which produces the greatest effect

in turning the boat the derivative of M with respect to must

vanish, which gives

and from this the value of 6 is found to be approximately 45,
since d is always much larger than b.

Values of the angle B for several values of the ratio b/d may now

be computed as follows:

b/d= J

cos 6 = 0.6825

e = 46 58'

t

0.6916

46 15'

0.6947

46 oc'

0.7069

45 x/

o

0.7071

45
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which shows that about 45 is the advantageous angle. In practice
it Ls usual to arrange the mechanism of the rudder M> that it CSH
be turned to an angle of about 42 with the keel, for it i. immd that the

power required to turn it the additional 3 or 4 is not >uflii imt ly

pensated by the slightly greater moment that would !.< pnMluced.
The reasoning also shows that intensity of the turning moim-i:-

creases with v, so that the rudder acts most promptly when the bn.it

is moving rapidly. For the same reason a rudder on a steamer

pelled by a screw is not required to be so broad as one on a boat drivt-n

by paddle wheels, for the effect of the screw is to increase the velocity
of the impinging water, and hence also to increase the dynamic p
sure against the rudder.

Prob. 190. Explain how it is that a boat can sail against the wind. \Vh.it

is the influence of the keel in this motion ?

ART. 191. TIDES AND WAVES

The complete, discussion of the subject of waves might, like

many other branches of hydraulics, be expanded so as to em-

brace an entire treatise, while there can be here given only

the briefest outline of a few of the most important principles.

There are two classes or kinds of waves, the first including the

tidal waves and those produced by earthquakes or other sudden

disturbances, and the second those due to the wind. Tin- daily

tidal wave generated by the attraction of the moon and sun orig-

inates in the South Pacific Ocean, whence it travels in all dim
tions with a velocity dependent upon the depth of water and the

configuration of the continents, and which in some regions i-

high as 1000 miles per hour. Striking against the coasts, the tidal

waves cause currents in inlets and harbors, and if the circum-

stances were such that their motion could become uniform and

permanent, these might be governed by the same laws which

apply to the flow of water in channels. Such, however, is rarely

the case; and accordingly the subject of tidal currents is one

of much complexity and not capable of general formulation.

The velocity of a tidal wave on the ocean is VgZ), wh<

is the depth of the water. When such a wave rolls over the

land, the greatest velocity it can have is V#/, where d is iis depth.
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this being the case of the bore (Art. 139). The velocity of a

wave which is produced by a sudden disturbance in a channel of

uniform width has also been found to be ^/gD, where D is the

depth of the water.

Rolling waves produced by the wind travel with a velocity which

is small compared with those above noted, although in water where

the disturbance can extend to the bottom, it is generally supposed that

their velocity is Vgl>. Upon the ocean the maximum length of such

waves is estimated at 550 feet and their velocity at about 53 feet per
second. For this class of waves it is found by observation that each

particle of water upon the surface moves in an elliptic or circular orbit,

whose time of revolution is the same as the time of one wave length.

Fig. 191.

Thus the particles on the crest of a wave are moving forward in the

direction of the motion of the wave, while those in the trough are mov-

ing backward. When such waves advance into shallow water, their

length and speed decrease, but the time of revolution of the parti-

cles in their orbits remains unaltered, and as a consequence the slopes

become steeper and the height greater, until finally the front slope be-

comes vertical and the wave breaks with roar and foam. Below the

surface the particles revolve also in elliptic orbits, which grow smaller

in size toward the bottom. The curve formed by the vertical sec-

tion of the surface of a wave at right angles to its length is of a cycloidal

nature.

The force exerted by ocean waves when breaking against sea

walls is very great, as already mentioned in Art. 155, and often proves
destructive. If walls can be built so that the waves are reflected with-

out breaking, as is sometimes possible in deep water, their action is

rendered less injurious. Upon the ocean waves move in the same di-

rection as the wind, but along shore it is observed that they generally
move normally toward it, whatever may be the direction in which the

wind is blowing. The force of wave action is felt at depths of over

100 feet oelow the surface, for sand has been brought up from depths
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of 80 feet and dropped upon the decks of vessels. Shoals also cause

a marked increase in the height of waves, even when such shoals arc

500 feet or more below the water surface.

Prob. 191a. In a channel 6.5 feet wide, and of a depth decreasing infect

per 1000 feet, Bazin generated a wave by suddenly admitting water at

upper end. At points where the depths were 7.16, 1.85, 1.46, and 0.80

the velocities were observed to be 8.70, 8.67, 7.80, and 6.69 feet per second.

Do these velocities agree with the theoretic law ?

Prob. 1916. Show that the values of/ given in Art. 175 for use in the

formula F=fv* are to be multiplied by 5.255 when v is in meters per second

and F in kilograms per square meter.

Prob. 191r. Compute the metric horse-power required for a velocity of

25 kilometers per hour for a boat which has a submerged area of 237 square

meters.

Prob. 19 Id. A ship rolls from starboard to port in 7.5 seconds. If the

metacentric height m is 2.4 meters, what is the value of the transverse radius

of gyration of the ship ? How much must the radius of gyration be increased

in order to increase the time of rolling 1 5 percent ?
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CHAPTER 16

PUMPS AND PUMPING

ART. 192. GENERAL NOTES AND PRINCIPLES

Among the simple devices for raising water that have been

used for many centuries, and which may be called lift pumps
in a general way, are the sweep and windlass, buckets attached

to a revolving wheel, the chain and bucket pump where the

buckets move in a cylinder, and the Archimedian screw. The

chain and bucket pump was probably first used by the Chinese

in the form of an inclined trough in which moved the buckets

attached to the endless chain, and this device in various forms

has been used in all countries for lifting water from wells. The

Archimedian screw, invented by the great engineer Archimedes

when he was in Egypt, about 240 B.C., consists of a tube wound

spirally around an inclined cylinder. When the lower end is

placed under water and the cylinder revolved, the water is lifted

and flows out of the upper end of the tube. This screw pump
is still in use in northern Egypt, and it is said to be a satisfactory

apparatus for a low lift.

The fact that water would sometimes rise into a space from

which the air had been removed was known at a remote antiquity,

and this was frequently explained by the statement that
" nature

abhors a vacuum." It was not until the middle of the seventeenth

century that the true reason of this phenomenon was explained

through the researches of Torricelli and Pascal (Art. 4), but

prior to this time a rude form of suction pump, made by attach-

ing a pipe to a bellows at the opening where the air usually enters,

was used in both France and Germany. In 1732 the first true

suction and lift pump was devised by Boulogne, and a little later

the suction and force pump came into use.
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The force pump is a device for raising water by meai

pressure exerted on it by a piston. The syringe, which has been
known from very early times, is an example of thU p
but the first true force pump was invented in Kgypt about 250
B.C., by Ctesibius, a Greek hydraulician, and the descripti<

it given by Vitruvius indicates that it was used to SOUP

by the Romans. The early force pumps were placed with their

cylinders below the level of the water to be lifted, and had valves

which closed under the back pressure of the water. By placing
the cylinders above the water level and utilizing the principl-

suction, the suction and force pump originated.

All devices for raising water may be classified under the three

principles above mentioned: that of lifting in buckets, drawing
it up by suction, or forcing it up by pressure, or under combina-

tions of these. The lift or bucket principle is mainly employed
for small quantities of water and has only a limited use in en-

gineering practice. The suction principle, combined with lift

or pressure, is extensively used, but in no event can the height

of the suction exceed 34 feet, for it is the atmospheric pressure that

causes the water to rise when the air above it is exhausted
;
under

this principle also may be put injector pumps which operate under

the action of negative pressure-head (Art. 31). The principle of

direct pressure governs not only the force pump, but rotary and

centrifugal pumps and also the devices for raising water by com-

pressed air.

Whenever water is raised from a lower to a higher level, an

amount of work must be expended greater than the theor

work required to lift the given weight of water through the given

height. The excess, called the lost work, is spent in overcoming

resistances of friction and inertia. In designing pumps it is tin-

object to reduce these losses to a minimum, so that the greatest

economy in operation may result. The subject will here be

mainly considered from a hydraulic standpoint, the object bt

to set forth the fundamental principles by which hydraulic losses

may be avoided as far as possible.

Let W be the weight of water raised per second and // the
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height of the lift, then the useful work per second k is Wh. Let

the total work expended per second be called A', then the efficiency

of the apparatus is e = k/K. The work K to be considered here

is that delivered to the pump and does not include that lost in

transmission from the motor, since this, of course, is not fairly

chargeable against the pump or lifting apparatus. If K be re-

placed by W(h + h'), where h' is the head lost in overcoming the

frictional resistances, then the efficiency may be written

which is less than unity, since h
f

cannot be made zero.

The power required to operate a pump to raise the weight W
of water per second through the height h is easily computed if

the efficiency of the pump is known. For example, to raise 150

gallons per second through a height of 20 feet with a pump having
an efficiency of 62 percent, the work which must be imparted to

the pump per second is

K =
k/e

=
(150 X 8.335 X 2o)/o.62 = 40 340 foot-pounds,

and this, divided by 550, gives 73.3 horse-powers.

Prob. 192. A pump raises 20.5 cubic feet of water per second through

a height of 127.5 feet - The lost head in the pump and pipes amounts to

13.5 feet. Compute the efficiency of the pumping plant and the power re-

quired to operate it.

ART. 193. RAISING WATER BY SUCTION

The term
"
suction" is a misleading one unless it be clearly

kept in mind that water will not rise in a vacuum tube unless

the atmospheric pressure can act underneath it. For example,

no amount of rarefaction above the surface of the water in a

glass bottle will cause that water to rise. When the tube is

inserted into a river or pond, however, the water will rise in it

when a partial vacuum is formed, since the atmospheric pressure

which is transmitted through the water pushes it up until equilib-

rium is secured (Art. 4). The mean atmospheric pressure of 14.7

pounds per square inch at the sea level is equivalent to a height
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of water of 34 feet, and this is the limit of raising water by suc-

tion alone. In practice tin's height cannot be reached on account

of the impossibility of producing a perfect vacuum, and it is found

that about 28 feet is the maximum height of >u< tion lift.

The height of the water barometer varies with the state of

the weather, with the elevation above sea level, and with the

temperature. The value of 34 feet is that corresponding ti

reading of 30 inches on the mercury barometer at a temperature
of 32 Fahrenheit. For higher temperatures more or less vapor
is evaporated from the water surface and fills the suction tube,

so that a complete vacuum cannot be formed. When the mercury
barometer reads 30 inches, the water barometer is only 33.4 feet

if the temperature of the water is 60 Fahrenheit, 32.4 feet at

90, about 30 feet for 120, about 23 feet for 160, about 6 feet

for 200, and for 212 its height is zero, since the tube is then

filled with steam. Hence water at the boiling-point cannot be

raised by suction.

/.

Fig. 193 gives two diagrams illustrating the principle of action

of the common suction and lift pump. It consists of two verti-

cal tubes BD and BE, the

former being called the suc-

tion pipe and the latter the

pump cylinder. The piston

A in the pump cylinder has

a valve opening upward, and

the valve B at the top of the

suction pipe also opens up-

ward. In the left-hand dia-

gram the piston is descending,

the valve A being open and

B being closed under the pres-

sure of the air in the space

between them. In the right-

hand diagram the piston is

ascending, the valve A being closed by the pressure of the

water above it, while B is open, owing to the excess of atmos-
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pheric pressure in BD above that in AB. In the first diagram
the piston has made only one or two strokes, so that the water

has risen but a short distance in the suction pipe. In the

second diagram the piston has made a sufficient number of

strokes so that the pump cylinder is full of water which is flowing

out at the spout E.

Let hi be the distance from the water level D to the lowest

position of the piston ;
this is called the height of lift by suction.

Let h2 be the height from the lowest position of the piston to the

spout where the water flows out
;

this is called the height of lift

by the piston. The distance hi -f h2 is the vertical height through
which the water is raised, and if W be the weight of water raised

in one second, the useful work per second is W(h\ + A2 ). The

energy imparted to the pump through the piston rod is always

greater than this useful work, since energy is required to overcome

the frictional resistances due to the motion of the water and pis-

ton, as also to overcome the resistance of inertia in putting them

into motion.

To discuss the action of the pump in detail, let / be the stroke

of the piston, that is, the distance between its highest and lowest

positions. Let A be the area of the cross-section of the pump
cylinder and a that of the suction pipe. Let the piston be sup-

posed to be at its lowest position at the beginning of the operation

when no water has been raised in the suction pipe above the level

D in Fig. 193. On raising the piston through the stroke / it

describes the volume Al, and the volume of air ah\ now has the

volume Al -f a(hi x) in which x is the height through which

the water rises during the upward stroke. Let ha be the height

of a water barometer corresponding to the air pressure above the

water level at the beginning of the stroke, then ha y is the pres-

sure-head at the end of the stroke. Since, by Mariotte's law,

the pressure of a given quantity of air is inversely as its volume,

(ha x)/ha equals ahi/(Al + ahi ax), whence,

in which r represents the ratio A /a. For example, let A be

8 and a be 2 square inches, or r =
4, let hi be 20 and /be 1.5 feet

;
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then for // = 34 feet. the water rises during the first upward
stroke to the height .v = 3.6 feet. Tor the second upwar
/ia is 34.0

-
3.6

= 30.4 feet and //i is 20.0 - 3.6 - 16.4 i.

then the formula gives .v =
3.7 feet, so that the water level now

stands 7.3 feet above its original level D. Proceeding in lik<

manner, it is found that at the end of the third upward sir-

the water stands at u.a feet above its original level. Similarh

the end of the fourth upward stroke it is found to be 15.3 feet

above Z>, while at the end of the fifth upward stroke it ha> reached

a height of 19.8 feet above its original level. During the progress
of the sixth upward stroke the water enters the pump cylinder,

during the next downward stroke it flows through the piston

valve, and in the seventh upward stroke the water above the

piston is lifted and flows out through the spout.

The preceding discussion supposes that there is no leakage of

air through and around the piston, but this cannot be attained in

practice ;
hence the degree of rarefaction below the piston is never so

great as the above formula gives, and the number of strokes required

to elevate the water above the valve B is larger than the computed
number. When the suction height is greater than 25 feet, it becomes

difficult to secure sufficient rarefaction to lift the water, and hence a

foot valve, also opening upward, is placed in the suction pipe below

the water level D. The pump cylinder and suction pipe can then be

primed, or filled with water from above, and after this is done there

will be no difficulty in operating the pump. If there is no foot valve.

it will be necessary to have a very long piston stroke in order to start

the pump, but with a foot valve the stroke of the piston ma

any convenient length.

The action of this pump is intermittent, and water flows from the

spout only during the upward stroke of the piston. When then

N upward strokes per minute, the discharge in one minute is .Y.I/.

if the piston and its valve be tight. The useful work |KT minute i-

'NwAlfa+k), if w be the weight of a cubic unit of water. When /

and ArMa are in feet, A in square feet, and w in pounds' per cubic foot,

the horse-power expended in this useful work is

and to this must be added the horse-power required to overcome

the resistances of friction and inertia. Thi- additional jxwer
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amounts to asmuch as that needed for the useful work, and in this case

the efficiency of the pump is 50 percent. Suction and lift pumps
are of numerous styles and sizes, the simplest being of square wooden

tubes or of round tin-plate tubes with leather valves, and these can

be readily made by a carpenter or tinsmith. They are mainly used

for small quantities of water and for temporary purposes.

Prob. 193. The diameter of the pump cylinder is 8 inches and that of the

suction pipe is 6 inches, while the vertical distance from the water level to the

spout is 23 feet. If the pump piston makes 30 upward strokes per minute,

each 9 inches long, what horse-power is required to operate the pump if its

efficiency is 45 percent ?

I

ART. 194. THE FORCE PUMP

A force pump is one that has a solid piston which can trans-

mit to the water the pressure exerted by the piston rod and thus

cause it to rise in a pipe. The early force pumps had little or no

suction lift, as the pump cylinder was immersed in the body of

water which furnished the sup-

ply, but the modern forms

usually operate both by suction

and pressure, the former occur-

ring in a suction pipe and the

latter in the pump cylinder.

Fig. 194a shows the principle of

action of the common vertical

single-acting suction and force

pump in which there is no water

above the piston. In the left-

hand diagram the piston is as-

cending, and the water is rising

in the suction pipe BD under

Fig. i94a. the upward atmospheric pres-

sure; this ascent of the water

occurs in exactly the same manner as explained in Art. 193, and

after several strokes its level rises above the suction valve B.

The right-hand diagram shows the piston descending and forcing

the water up the discharge pipe CE. At C, where this pipe
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joins the pump cylinder, is a think valve which closes on

upward stroke and thus prevents the water in ( 'K from returning

into the pump cylinder, while it opens on the downward Bl-

under the upward pressure of the water.

Let A be the area of the cross-section of the pump cylinder

and / the length of the stroke of the piston. Then at each upward
stroke a volume of water equal to Al is raised through the suction

pipe, and in each downward stroke the same volume is raised in

the discharge pipe. If // be the total lift above the water 1

D and w the weight of a cubic unit of water, the work done in ea< h

double stroke is wAlh. If there be made Ar double strokes per

minute, the useful work per minute is NwAlh. When all dimen-

sions are in feet, the horse-power required to do this useful work

is found by dividing this quantity by 33 ooo, and the actual

horse-power required to run the pump is greater than this by the

amount needed to overcome the frictional resistances. Thi<

additional power will depend upon the length of the suction and

discharge pipes, the speed at which the pump is operated, the

friction along the sides of the piston, the losses of head in the

passage of the water through the valve openings, and the !-

of energy due to putting the water into motion at each stroke.

The efficiency of single-acting suction and lift pumps hen*

between wide limits, 90 percent or more being obtained only for

very low speeds and lifts, while for high speeds and lifts it may
be 20 percent or less.

The cylinder of the single-acting pump may be placed hori-

zontal, as seen in Fig. 1946, where BD is the suction pipe and
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CE the discharge pipe. When the piston moves toward the left,

the suction valve B opens and the check valve C closes
;
when it

moves toward the right, B closes and C opens. The discharge

is intermittent, as in the previous case, but the horizontal position

of the piston sometimes renders the connection of the piston rod

to the motor more convenient. If the height of the suction lift be

equal to that of the discharge lift, the force required to move the

piston will be the same in each stroke and the pump will work

with less shock than where the two lifts are unequal. Usually,

however, the height of the discharge lift is greater than that of

the suction lift, and the force required to move 'the piston is then

the greatest when it moves from left to right in Fig. 194ft. In

order to equalize the forces exerted by the motor the duplex pump
was devised

;
this consists of two single-acting cylinders placed

side by side and connected to the same suction and discharge

pipe, the pistons moving so that one exerts suction while the

other is forcing the water upward. Three single-acting cylinders

are also sometimes connected with the same suction and dis-

charge pipe, in which case it is called the triplex pump. Duplex
and triplex pumps give a more nearly continuous flow of water

in both the suction and discharge pipes, and thus diminish the

shocks that occur in a pump with one cylinder, while the efficiency

is materially increased because the losses due to starting and

stopping the columns of water are in large part avoided.

A double-acting pump is one having a single cylinder in which

a solid piston or plunger exerts suction and pressure in both

strokes and thus gives a nearly continuous flow through suction

and discharge pipes. Fig. 194d shows the form known as the

piston pump, while Fig. 194e is that called the plunger pump,
the piston being replaced by a long cylinder moving in a short

stuffing box A A. In both figures D is the suction pipe and E
the discharge pipe. When the piston moves from left to right,

the valves BI and C2 open, while B>2 and C\ close
;
when it moves

in the opposite direction, #> and Ci open, while BI and C2 close.

The plunger pump was invented in the seventeenth century, and

its advantages over the piston type are so great that it is now
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extensively used for large pumping machinery. The \!inl,

the piston pump must be bored to an e\a< t and uniform |j

its piston must be carefully puc ked. while in the plunger pump
only the short length of the stuffing box is bored and packed, the

plunger itself having no packing. The water lifted in one stroke

of either pump is Al, where A is the area of the piston and / the

length of its stroke, provided there is no leakage past the packing.

For all these forms of pumps a foot valve should be placed in the

suction pipe, if the suction lift exceeds 20 feet, in order that the pump
may be readily primed (Art. 193). To reduce the shocks that occur

to a certain extent even in the double-acting pumps, an air chamber

is frequently attached to the discharge pipe so that the confined air

may distribute and lessen the shock that would otherwise l>c concen-

trated on the end of the discharge pipe. Fig. 194c shows such an air

chamber attached to a single-acting pump; in the up|K-r part of it

is seen the compressed air which is receiving the pressure from the

piston. After the check valve C closes the pressure of this air main-

tains the flow up the discharge pipe ,
and hence the air chamber

helps to avoid the losses due to intermittent flow. A duplex pump
or a double-acting pump, when provided with an air chamber of proper

size, will work very smoothly.

Prob. 191 Consult Ewbanks' Hydraulics and Mechanics (New York.

1847), and describe a method of raising water through a low lift by means of

a frictionless plunger pump. Ewbank notes that a stout young man weigh-

ing 134 pounds raised 8$ cubic feet per minute with this machine to a height

of 1 1 1 feet, and worked at this rate nine hours per day. If the efiu in

this pump was unity, what horse-power did the stout young man exert ? Was

his performance high or low?
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ART. 195. LOSSES IN THE FORCE PUMP

A reliable numerical computation of the hydraulic losses

of energy in the force pump cannot be made without knowing
the constants to use in finding the losses of head due to the

valves (Art. 92), and these have been experimentally determined

for only a few special forms. The valves shown in most of the

figures of the preceding articles are simple flap valves, but poppet
valves are more generally used, and Fig. 194e indicates such. In

passing through a valve the water loses energy in friction, and also

in impact due to the subsequent expansion. Since pumps are

made in numerous forms having different details, general discus-

sions of losses are difficult to make. The attempt will, however,

be undertaken for the plunger force pump of Fig. 194e. Let h

be the total height through which the water is lifted by both

suction and pressure, and h
r be the sum of all the hydraulic losses

of head. Let K be the energy delivered per second to the piston

rod, k' the energy expended in friction in the stuffing boxes of the

piston rod and plunger, q the discharge per second, and w the

weight of a cubic unit of water. Then

2g

and the pump should be so arranged as to make the losses k f and

h' as small as possible. Only the hydraulic losses will be con-

sidered in the following discussion.

By means of the principles of Chap. 7 a rough formulation

of the elements that make up the lost head h' can be effected,

supposing the flow in the pipes to be steady. Let /i be the length,

di the diameter, and vi the velocity for the suction pipe, and /2 ,

dz, and % the same things for the discharge pipes. Let 211 be

the number of valves in the suction and discharge chambers

(Fig. 194e), all being taken of the same size, and let V denote

the velocity of the water through each valve opening. Let these

chambers be so large that the velocity of the water through them

is very small compared to that in the pipes and valve openings.

K+I) !!+/^ (195)
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-gives all the hydraulic losses of head. In the first parenthesis
m indicates the loss due to entrance at the foot of the suction ;

(Art. 89), //i '</! the friction loss in the suction pipe (Art

and i the loss due to expansion (Art. 76) as thr water rnu-r> tin-

suction chamber B\B. In the second parenthe>i> ;;/ indicates

the loss due to the open valves (Art. 92) and i that due to sudden

expansion as the water enters the pump cylinder through the

suction valves and the discharge chamber CiC2 through tin-

charge valves. The last term gives the loss due to friction in the

discharge pipe. If there is an air chamber on the discharge pipr.

another term might be introduced, but as the effect of the air

chamber in reducing water hammer is a beneficial one, this term

need not be used. The starting and stopping of the piston brings

in other losses of energy, but as these are not hydraulic losses

they will not be considered here.

When the pipes are long, the losses due to pipe friction will

far exceed those in the pump, and are not fairly chargeable against

it as a machine; hence in order to consider the pump alone

the lengths /i and ^ may be made equal to zero, as also m in the

first parenthesis. Then formula (195) becomes

in which the first term of the second member gives the loss of

head in entering the suction chamber, and the second those oc-

curring in entering and leaving the pump cylinder. This equa-

tion appears, at first thought, to indicate that a suction chamber

is not a hydraulic advantage, although it is known to afford a

practical advantage in causing the valves to operate successfully.

as also in permitting ready access to them. If a be the area of

each valve opening, and ai that of the suction pipe, then a&i must

equal \naV ,
since the same quantity of water passes per second

through the suction pipe and through \n valves. Accordingly the

total loss of head in the pump may be written

2g \na/ 2g
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which clearly shows that this loss decreases as the number of

valves increases, when a is kept constant. Therefore the suction

and discharge chambers may be made to give a hydraulic advan-

tage, either by using many valves of a given size or by making
the total valve area na sufficiently large, since h' is thus diminished.

The number of valves will usually be 8, 12, or 1 6.

As a numerical example, take a plunger force pump, like Fig.

194e, having a piston area A = 0.84 square feet, and a stroke of 1.25

feet, the number of single strokes per minute being 30. The volume

of water lifted per second is hence 30 X 0.82 X 1.25/60 = 0.525 cubic

feet. Let the diameter of the suction pipe be 10 inches and the area

of its cross-section a^ = 0.545 square feet. The mean velocity in the

suction pipe is then 0.525/0.545
= 0.96 feet per second. Let there be

12 valves in the suction chamber, so that n = 6, and let the area of

each valve opening be a = 8 square inches = 0.0556 square feet.

The velocity through each of the open valves is then V = 0.525/3

X 0.0556 = 3.15 feet per second. As Art. 92 does not give the values

of m' for poppet valves, it may be here noted that the experiments
of Bach* indicate that they range from i.i to 2.8, depending upon the

height of valve lift and the width of the seat. Taking 2 as a mean
value of m', the lost head in the pump is

h' =
o.oi555[i + 8X3 f

' 545
.Y1-962 = -96 feet.

L \6Xo.0556y J

The useful head k, when the lengths of the suction and discharge pipes

are disregarded, is probably about 3 feet, so that the hydraulic effi-

ciency is e = h/(h-{-h'} 0.75. If the lengths of the vertical suction

and discharge pipes be each 20 feet and their diameters be 10 inches,

the useful head h is about 43 feet and from (195) the value of h' is

found to be about one foot, so that the hydraulic efficiency is about

0.97. The velocity-head v<?/2g which is lost at the top of the discharge

pipe is here only o.oi feet, so that it is unnecessary to consider it in

determining the efficiency.

This discussion shows that the losses of head in force pumps
may be made very slight by running them at low speeds in order that

the velocity Vi may be small. It shows that the losses decrease as the

areas of the valve openings and their number are increased. It shows

*
Zeitschrift deutscher Ingenieur Verein, 1886, p. 421.
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that, for vertical suction and discharge pipes, the efficiency increaies
with the useful lift //, if tin- velocity in the j.ijK-s is the same (or

different lifts. These conclusions are verified by e\|K-rimenU, sopic
of which will be noted in the next article. Since the ilow tin

valves and pump cylinder is not quite steady, numerical computations
like the above cannot, however, he expected to -ive more than r-

approximate results; nevertheless such results are useful in indicating
the influence of the resistances upon the efficiency.

Prob. 195. For the above numerical example, compute the horse-power

required to run the pump when the useful lift is 4.^ feet, assuming that 3 per-
cent of that power is expended in overcoming friction in the stuffing boxes.

ART. 196. PUMPING Exc.i

The steam engine was invented and perfected through the

desire to devise methods of pumping water better than those in

which the power of men and horses was used'. Worcester in

1633, and Papin in 1695, used the direct pressure of steam upon
water in a cylinder, and Savery in 1 700 used both such pressure

and the partial vacuum caused by the condensation of the steam.

Newcomen in 1705 used a piston, on one side of which steam

was applied and condensed, the motion of the piston being com-

municated by a walking beam to the piston rod of a pump. Watt .

about 1775, introduced the crank, the parallel motion, the cut-off,

the governor, and other improvements; he also brought the

steam to both sides of the piston, thus making the engine double-

acting. The first important application of the steam engine

was in operating pumps to drain mines, but it soon came into

use in all branches of industry where power was needed. Its

influence on modern progress has been great.

The modern pumping engine consists of one or more steam

cylinders connected to the same number of pump cylinders by

piston rods, so that the steam pressure is directly transmitted

through them to the water. It is important that the pressure

in the water cylinder should be maintained nearly constant

during the length of the stroke, and hence the steam should not be

used expansively in the usual way; to insure constant steam

pressure some form of compensator is used. The water cylinders
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are usually of the plunger type, and these are connected to the

same suction and discharge pipes, an air chamber being placed

on the latter to relieve the pump chambers of shock and to in-

sure steady flow. The boilers, steam cylinders, and water cyl-

inders constitute one machine or apparatus called a pumping

engine. The efficiency of this apparatus is low, for it is equal to

the product of the efficiencies of its separate parts. The efficiency

of the furnace and boiler is about 75 percent in the best designs,

the efficiency of the steam cylinders about 30 percent, and that

of the water cylinders about 80 percent, so that the efficiency of

the pumping engine as a whole is only 18 percent. This means

that only 18 percent of the energy of the fuel is utilized in lifting

the water, and this figure is, indeed, a high one, for many pump-

ing plants are operated with an efficiency of less than 10 percent.

The term "duty" is often employed as a measure of the per-

formance of a pumping engine, instead of expressing it by an

efficiency percentage. This term was devised by Watt, who

defined duty as the number of foot-pounds of useful work pro-

duced by the consumption of 100 pounds of coal. On account

of the variable quality of coal a more precise definition of duty

was introduced in 1890 by a committee of the American Society of

Mechanical Engineers, namely, that duty should be the number

of foot-pounds of work produced by the expenditure of i ooo ooo

British thermal heat units. One British thermal heat unit is

that amount of energy which will raise one pound of pure water one

Fahrenheit degree in temperature when the water is at or near

the temperature of maximum density (Art. 3) ;
this amount "of

energy is 778 foot-pounds, and this constant is called the me-

chanical equivalent of heat. The duty of a perfect pumping

engine, in which no losses of any kind occur, would be 778 ooo ooo

foot-pounds. The highest duty obtained in a test is about

180000000 foot-pounds, and the efficiency of such an engine is

180/778 =
0.23.* Common pumping engines have duties ranging

from 1 20 ooo ooo to 60 ooo ooo, the corresponding efficiencies

being from 15 to 7.5 percent. The modern definition of duty

*
Transactions American Society of Civil Engineers, vol. 73, 1911.
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agrees with that of Watt, if the coal used be of such quality that

one pound of it possesses a potential energy of 10000 British

heat units, which is somewhat less than that obtainable in.m

average coal. The higher the duty of a pumping cn-in the

greater is the amount of work that ian be pcrfornu-d by burning
a given quantity of coal. A high-duty engine is h,

ical and a low-duty engine is wasteful in coal consumption, but

the first cost of the former is much greater than that of the latter

A duty test of a pumping engine consists in determining tin-

number of heat units furnished by a given quantity of coal, tin-

quantity of water lifted by the pump, the leakage past thr |>i>t.n

packing, the pressure-heads in the suction and discharge pi;

the indicated horse-power of the steam cylinders, and many other

minor quantities needed for estimating the efficiency of the boiler

and steam part of the apparatus. The usual method of d<

mining the discharge is by the displacement of the piston or

plunger ;
if A be the area of its cross-section, / the length of the

stroke, N the number of single strokes during the test, and T
the number of seconds during which the test lasted, then AM/ IN

the total quantity of water lifted, and

q
= cNAl/T

is the quantity lifted per second, c being a coefficient which takes

account of the leakage or slip past the plunger. The value of c

is to be found by' removing one of the cylinder heads and admit-

ting water on the other side of the plunger, and its value is usually

from 0.99 to 0.95 in new pumps. The total pressure-head // i-

found from H =(hh l +d)

where 7/i and h* are the pressure-heads corresponding to the mean

readings of the gages on the suction and discharge pipes and d

the vertical distance between the centers of the gage- ; here t lu-

pins sign is to be used when the corresponding pressure i> below

and the minus sign when it is above that of the atmosph

The total work done by the pump during the trial i< then ( Y.I/ //

and then the duty of the pumping engine

Duty = i oooooocNAlH/hezt uniu
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in which the denominator is determined by the thermodynamic
tests made on the boiler and steam engine. The capacity of the

pump, or the quantity of water lifted in 24 hours, is 24 X 3600 X q.

The efficiency of pump cylinders, which are tested in the above

manner, is usually found by dividing the work wqH done by them

in one second by that done by the steam as determined by
indicator cards taken from the steam cylinders. This method

differs from that used in the previous articles, and gives results

too small from the standpoint of hydraulic losses. A discussion

by Webber *
of several tests shows that this efficiency increases

with the lift as follows :

Lift in feet, 5 15 30 100 170 270

Efficiency, 0.30 0.45 0.65 0.85 0.91 0.88

The highest value of 91 percent was obtained from a test of a

Leavitt pumping engine having a duty of 1 1 1 549 ooo foot-

pounds, and a capacity of 4 400 ooo gallons per 24 hours
;
the

duration of this test was 15.1 hours.

Prob. 196. In a test lasting 12 hours, 27502000 heat units were pro-

duced under the boiler. The area of the plunger was 172 square inches, the

length of the stroke was 18.9 inches, the number of single strokes was 76 ooo,

and the leakage past the plunger packing was 5900 cubic feet. The pressure

gage on the force pipe read 100 and the vacuum gage on the suction pipe

read 9.3 pounds per square inch, the distance between the centers of these

gages being 8 feet. The mean indicated horse-power of the steam cylinders

was 128. Compute the discharge of the pump in cubic feet per second and

its capacity in gallons per day. Compute the total pressure-head H. Com-

pute the duty of the pumping engine. Compute the efficiency of the pump

cylinders.

ART. 197. THE CENTRIFUGAL PUMP

The centrifugal pump is the reverse of a turbine wheel, and

any reaction turbine, when run backwards by power applied to

its axle, will raise water through its penstock. The centrifugal

pump, like the turbine, is of modern origin and development.

A rude form, devised by Ledemour in 1730, consisted of an

inclined tube attached by arms to a vertical shaft; the lower

* Transactions American Society Mechanical Engineers, 1886, vol. 7, p. 602.
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end of the tube being immersed, the \\..h r tWrd inm , its upper
end when the shaft was rotated. It was not, however, i;

about 1840 that the first true centrifugal pumps ca: use,
and they have since been perfected so as to be of great \,d;.

engineering operations, especially for low lifts.

Fig. 197 shows the principle of the arrangement and a. tion of

the centrifugal pump. The power is applied through the axis A
to rotate the wheel

BB in the direction

indicated by the ar-

row. This wheel is

formed of a number

of curved vanes like

those in a turbine

wheel (Art. 174). The

revolving vanes pro-

duce a partial vacuum,
and this causes the

water to rise in the

suction pipe/)/) which
Fig. 197.

enters through the center of the wheel case and delivers the

water at the axis of the wheel. The water is then fone.l

outward through the vanes and passes into the volute cham-

ber CC, which is of varying cross-section in order to accom-

modate the increasing quantity of water that is delivered

into it, and all of which passes up the discharge pipe E. The

rotation of the wheel hence produces a negative pressure at the

upper end of the suction pipe and a positive pressure in the

volute chamber, and the water rises in the pipes in the same

manner as in those of a suction and force pump. The height of

the suction lift cannot usually exceed about 28 feet.

The parallelograms of velocity shown in Fig. 197 are the

same as in the reaction turbine (Art. 174), and a similar nutation

will be used. The velocities of rotation of the inner and outer

circumferences will be called // and ;/,, the absolute velo>

the water as it enters and leaves the wheel are to and PI, and the
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corresponding relative velocities are V and V\. The angles of

entrance, approach, and exit are called
</>, , and #, while 9 denotes

the angle between v\ and u\. Let HQ be the pressure-head at the

top of the entrance pipe and HI that at the foot of the discharge

pipe, while h and hi are the heights of the suction and force lifts

estimated downward and upward from the center of the wheel,

and let ha be the height of the water barometer. Then from

formula (162) p _^ _ ^ +^ _^^ _^
and also from (31) 2 ,

not considering frictional resistances,

-

Combining these equations, and replacing hi + h by h, where

h is the total lift, the fundamental equation for the discussion of

frictionless centrifugal pumps results. To introduce the fric-

tional losses, however, // + h' should be used instead of h, where

h' is the total head lost in all the hydraulic resistances. Then

F2 - JV - 2+ Wl
2 + tf -V =2g(h + //) (197)!

is the fundamental formula for the discussion of the centrifugal

pump. Since there are no guides, the water enters the vanes

radially, so that the approach angle is a right angle, and hence

V2 = u2 + v
2

. Also the parallelogram of velocities at exit gives

Fi
2 = Ui

2
-f vi

2
2UiViCO$0. Inserting these values of F2 and

Fi
2 in (197)i, it reduces to

utf>i cos0 = g(h + //)

which is a necessary relation connecting u\ and vi.

A centrifugal pump must be run at a certain velocity in order

to overcome the pressure-head // -f- h' by means of the velocity-

head Vi
2
/2g of the issuing water. Hence h + //' = t'i

2
/2g, and

equating this to the value of h + h
f

established by the above

formula, there results u\ cos Q =
\o\. It hence follows from the

parallelogram of velocities that V\ and u\ must be equal. Then

9 = 90
-

J0, and

2 sin
or Wl = (197)2
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L'ives the required velocity of the outer tin umlVivn. I of the \vi

This velocity decreases a> the exit angle J im reax-s
, when fi is

very small. HI is very large. ;
when the vanes are radial at the outer

circumference, is 90 and MI = Vg(A + h'). Hence the speed
of the pump must increase with the square root of the pre>-

head // + //'. Since v\ =
</ </i. where a\ is the area of tlu- exit

orifices normal to :], the velocity is also MI =
qJ2a\ sin ), and

there-fore the discharge q increases directly with the speed.

Since the speed must increase with the lift, and sim e the losses

of head increase with the speed, it follows that the elnYien*

the centrifugal pump in general decreases with the lift. This

theoretic conclusion has been verified by practical tests. Webber,

in his discussion cited in the last article, gives the following as

the mean results derived from a number of experiments, t In-

efficiency computed being the ratio of the work done by the pump
to that obtained from indicator cards taken on the cylinders of

1

the steam motor :

Lift in feet, 5 10 20 40 60

Efficiency, 0.56 0.64 . 0.68 0.58 0.40

For a low lift the centrifugal pump has a hydraulic efficiency

higher than these figures indicate, but, as in the case of the force

pump, it is difficult to determine reliable values by numerical

computations.

The centrifugal pump possesses an advantage over the force pump
in having no valves and in being able to handle muddy water, for

gravel may pass through the vanes without injuring them. The

above figure represents the principle rather than the actual d.

of construction. Usually the suction pipe is divided into two parts

which enter the axis upon opposite sides of the wheel, and the volute

chamber is often made wider than the wheel ca>e, thus forming wh.it

is called a whirl{>ool chamber, which prevents some of tin-

head due to impact. The vanes are sometimes curved in th<-

site direction to that shown in the figure-, as l>y so doing tlu- angle ft

is made larger and the speed of the pump is It emd, a- is -mi from

formula (197)2 . The theory of the centrifugal pump is,

much less definite than that of the reaction turbine, and i \|K-riment

is the best guide to determine the advantageous shape of the- vanes.
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Multiple stage centrifugal pumps for work against high heads

are extensively used.*f

Prob. 197. A centrifugal pump lifts 120 cubic feet of water per minute

through a discharge pipe having a diameter of i foot. The outer diameter

of the wheel is 2 feet, the exit angle is 90, the number of revolutions per sec-

ond is 60, and the water is lifted 18 feet. Compute the horse-power of the

pump, and its hydraulic efficiency.

ART. 198. THE HYDRAULIC RAM

The hydraulic ram is an apparatus which employs the dynamic

pressure produced by stopping a column of moving water to raise

a part of this water to a higher level than that of its source. The

principle of its action was recognized by Whitehurst in 1772^
but the credit of perfecting the machine is due to Montgolfier,

who in 1796 built the first self-acting ram. It has since been

widely used for pumping small quantities of water from streams

to houses, but is not so well adapted to lifting a large quantity ;

many attempts have been made in this direction, some of which

give promise of much usefulness.

The principle of the action of the hydraulic ram is shown in

Fig. 198, where A is the reservoir that furnishes the supply, BCD

Fig. 198.

the ram, AB the drive pipe which carries the water to the ram,

DE the discharge pipe through which a part of the water is

raised to the tank E. The ram itself consists merely of the waste

valve B through which a part of the water from the drive pipe

*
Journal American Society of Mechanical Engineers, Jan. and March, 1910.

t Journal Western Society of Engineers, April, 1910.

t Transactions Royal Society, 1775, vol. 65, p. 277.
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escapes, and the air vessel I) which has a valve C thai allows

water to enter it through BC\ but prevents its return. The waste

valve B is either weighted or arranged with a .spring so that it

will open when acted upon by the static pressure due to the head

H. As soon as it opens the water (lows through it, but as the

velocity increases the dynamic pressure due to the motioi

the column AB (Art. 157) becomes sufficiently great to close the

valve B. Then this dynamic pressure opens the valve ( and

compresses the air in the air chamber or forces water up the

charge pipe. A moment later when equilibrium has obtained in

the air vessel, the valve C closes and the air pressure maintains

the flow for a short period in the discharge pipe, while the water

in the drive pipe comes to rest. Then the waste valve B opens

again, and the same operations are repeated.

The algebraic discussion of the hydraulic ram is very dimcult

because it involves the time in which the waste valve * lose- and

the law of its rate of closing. The investigation in Art. l.~>7

however, clearly shows- that the operations above described will

take place if the drive pipe is long enough to produce a dynamic

pressure sufficient to close the waste valve. Let / be the length

of that pipe, v the velocity in it. /> the static unit pressure due

to H, w the weight of a cubit unit of water, g the acceleration

of gravity, and / the time in which the valve closes. Th

there is no static pressure at the valve during the flow, the for-

mula (157)! gives p
= 2wh/gt

_
po

which is a good approximation to the excess of dynamic pre>-

over the static pressure />
. It is seen that this excess /> may be

rendered very great by making / large and / small, and th;r

greatest value is
p
= wuv/g~t>

in which u is the velocity of sound in water. It is rare. !

that a drive pipe is sufficiently long to furnish the excess dynumk

pressure given by the last formula.

The efficiency of the hydraulic ram is the ratio of the

work done to the energy expended in the waste water. Let q

be the quantity of water lifted per second through the height k
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from the level of the reservoir A to that of the tank E. Let Q
be the discharge per second through the waste valve and H the

height through which it falls, then the efficiency of the ram and

its pipes is
_ wqh _ qh

wQH QH
It is found by experiment that the efficiency decreases as the ratio

h/H increases. Eytelwein found that e was 0.92 when h/H was

unity, 0.67 when h/H was 5, and 0.23 when h/H was 20, but these

values were probably derived by using a different formula for

the efficiency.

Experiments in 1890 at Lehigh University on a Gould ram No. 2,

in which the waste valve made 55 strokes per minute, gave a mean

efficiency of 35 percent. The length of the supply pipe was 38 feet

and its fall 1 2 feet, the length of the discharge pipe 60 feet, and the lift

h was 12 feet, so that the ratio h/H was unity. These experiments

showed also that the efficiency increased as the number of strokes

per minute was decreased by lessening the weight on the waste valve.

The maximum quantity of water raised per minute, however, oc-

curred with a heavier waste valve than that which gave the maximum

efficiency. The efficiency was also found to increase as the length of

the stroke of the waste valve decreased.

The least possible fall in the drive pipe of the hydraulic ram is about

i J feet and the least length of drive pipe about 1 5 feet. It is customary
to make the area of the discharge pipe from one-third to one-fourth

that of the drive pipe, and with these proportions a fall of 10 feet will

force water to a height of nearly 150 feet. A common rule of manu-

facturers is that about one-seventh of the water flowing down the drive

pipe may be raised to a height five times that of the fall in the drive

pipe; this is a rough rule only, for the length of the discharge pipe

is one of the controlling factors as well as its vertical rise.

The Rife hydraulic engine is a water ram on a large scale, two or

more being connected to the same discharge pipe, so that the flow in

it is nearly continuous.* Three of these engines are said to raise

864 ooo gallons of water per day to an elevation of 150 feet, the fall in

the drive pipe being 30 feet. The diameter of the drive pipe is 8 inches

and that of the discharge pipe is 4 inches; the waste valve weighs

*
Engineering News, 1896, vol. 36, p. 429.
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50 pounds, and it is provided with an adjusting li-\rr in nr.hr that
its effective weight may be regulated so as t. ,,um
di>clurge to be .delivered.

I'rob. I'.is. A hydraulic ram raises .<.>\ pouiuU ..i u.u.-r in 5 minutes

through a discharge pipe 60 feet long. The drivr pip- is .58 feet long an< :

amount of water wasted in 5 minutes is 41 } pouiv

pipe is 12 feet and the vertical rise of ihr dJMhargr pijn .iU\- the r

24 feet. Compute the efficiency of the ram.

ART. 199. OTHER KINDS OF PUMPS

The lift and force pumps described in Arts. I!).* .m ,l p.:

called displacement pumps, because the volume of water lifted

in one stroke is that displaced by the piston or plunger. If then-

be no leakage past the piston packing, and if no air is mingled

with the water, the discharge in a given time may be very I

rately determined by counting the number of strokes and multi-

plying this number by the displacement in one stroke. On
account of the reciprocating motion of the piston these forms

are often called reciprocating pumps. There is always a lo-

energy due to putting the piston into motion at the beginning of

each stroke, and to avoid this many forms of rotary pumps have

been devised; yet notwithstanding this loss the plunger :

pump is probably the most efficient and economical of all kinds.

A rotary or impeller pump is one in which the moving parts

have a circular motion only, and the centrifugal pump described

in Art. 197 is of this kind. Numerous other rotary pumps h

been invented, but none is widely used except the centrifugal one.

Fig. 1990 shows one where the moving parts consist of two wh<

which are rotated in opposite direction-; as indicated by tin-

arrows; this motion produces a partial vacuum whereby tin-

water rises in the suction pipe D. and is then carried between the

teeth and the case and forced up the discharge pipe- /'.. l-'ii: 1996

shows a form where the moving parts arc two lobes in COOt

with each other and each in contact with the im lo-iiu: cast-. In

the left-hand diagram the water rising in the pipe /) i- il.v

toward the right, but a moment later the lobe B I m-d
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the position shown in the right-hand diagram, and the water is

imprisoned between the lobe and the case. An instant later the

two lobes are forcing this water up the pipe E, while the water

coming in at D is flowing to the left. The greatest objection to

Fig. 199a. Fig. 199ft.

these pumps is that it is difficult to maintain close contact be-

tween the case and the lobes or wheels, owing to wear, so that

after being in use for some time there is much back leakage of

water, and the capacity and efficiency of the pump are diminished.

The only apparent advantage of the rotary pump is that it has

no valves. Five rotary pumps of the type of Fig. 1996 were

installed in 1902 at a pumping station near Chicago, the lobes

or impellers being 4 feet long and the distance between their

centers 2.7 feet
;

these pumps run at 100 revolutions per minute,

and each has a capacity of 6000 cubic feet per minute under the

total lift of about 8 feet.*

The pumps thus far described, with the exception of the

hydraulic ram, may be called mechanical pumps, because they

act under energy communicated to them from motors. All

mechanical pumps are reversible; that is, when the water moves

in the opposite direction under a pressure-head, they become

hydraulic motors. The reverse of the chain and bucket pump
is the overshot or breast wheel, that of the suction and lift pump
is the water-pressure engine, and that of the centrifugal pump is

the turbine. The hydraulic ram does not operate under the ac-

tion of a motor, and it does not appear to be reversible.

*
Engineering News, 1903, vol. 49, p. 172.
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Pumps which have no moving part- and which operate through

the action of air suction ami dynami* pre^ure < miMiiutr another

class which will now be briefly considered. Here Ix-long t he-

jet or ejector pumps which act largely through suction, and the

injector pump used on locomotives. The latter produces a

vacuum through the flow of steam, and cannot he discussed here,

as it involves principles of thermodynamii B. The fundamental

principle, however, is indicated in Fig. 199<r, which -ho\v> the jet

apparatus invented by James Thomson in 1850.* The water to

be lifted is at C, and it rises by

suction to the chamber B, from

which it passes through the dis-

charge pipe to the tank D. The

forces of suction and pressure are

produced by a jet of water issuing

from a nozzle at the mouth of the

discharge pipe, the nozzle being at

the end of a pipe AB through

which water is brought from a reservoir;, or the water delivered

from the nozzle may come from a hydrant or from a force pump.

Let // be the effective head of the jet as it issues from tin-

nozzle, 7/i the suction lift, and hz the lift above the tip of the

nozzle; let q be the discharge through the nozzle and q\ that

through the suction pipe. Then, neglecting frictional resi

It is found by experiments that the efficiency of this jet pump

is very low, usually not exceeding 20 percent, the highest tin

ciencies being for low ratios of hi + hi to H. This form of pump

has, however, been found very convenient in keeping colTer .1

and sewer trenches free from water, as it requires little or no at ten

tion and has no moving parts to get out of order.

Another class of pumps uses the pressure of air or of steam in

order to elevate water. The idea of these pumps is old, yet it was not

until 1875 that the steam pulsometer was perfected by Hall, while

*
Report of British Association. 185*, p. 130-
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the air-lift pump of Frizell dates from 1880. The air-lift pump is now

extensively used for raising water from deep wells, the compressed air

being forced down a vertical pipe in the well tube and issuing from its

lower end. As it issues, bubbles are formed in the entire column of

water in the well tube, and being lighter than a column of common

water, it rises to a greater height under the atmospheric pressure,

assisted by the upward impulse of the bubbles to a slight extent.

In this manner water having a natural level 50 feet or more below

the surface of the ground may be caused to rise above that surface.

It has been found in practice that for lifts of 15 to 50 feet from

2 to 3 cubic feet of air are necessary for each cubic foot of water

that is elevated. The efficiency of this form of pump is low, rarely

reaching 30 percent, although a maximum of 50 percent has been

claimed.*

Among the many forms of pumps operating under the pressure

of compressed air only the ejector pump used in the Shone system
of sewerage can here be mentioned. The sewage from a number of

houses flows to a closed basin, called an injector, in which it continues

to accumulate until a valve is opened by a float. The opening of this

valve allows compressed air to enter, and this drives out the sewage

through a discharge pipe to the place where it is desired to deliver it.

In the installation of this system of sewerage at the World's Fair

of 1893 in Chicago, there were 26 ejectors which lifted the sewage

67 feet, the total pressure-head being about 108 feet. Vacuum methods

of moving sewage have also been used in Europe, but these cannot

compete in efficiency with those using compressed air.

Prob. 199. For Fig. 199c let the diameter of the nozzle be i inch and

that of the discharge pipe 4 inches. Let H be 64 feet, h-^ be 18 feet, A2 be

3 feet, and the discharge from the nozzle be 0.25 cubic feet per second.

Compute the greatest quantity of water that can be lifted per second through
the suction pipe, and the efficiency of the apparatus when doing this work.

ART. 200. PUMPING THROUGH PIPES

When water is pumped through a pipe from a lower to a higher

level, the power of the pump must be sufficient not only to raise

the required amount in a given time, but also to overcome the

various resistances to flow. The head due to the resistances is

*
Journal of Association of Engineering Societies, 1900, vol. 25, p. 173.
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thus a direct source of loss, and it i> desirable tliat thr
|,i|*

should be so arranged as to render thi> as small as possible
The length of the pipe is usually much greater than th.

lift, so that the lofiflCS of head in friction arc material!) higher
than those indicated by the <li>cu>sion of Art. \*)~>. when- \crti.d

discharge pipes were alone considered.

Let w be the weight of a cubic foot of water and
</
the quantity

raised per second through the height //. which, for example, may
be the difference in level be-

tween a canal C and a reser-

voir R, as in Fig. 200a. The

useful work done by the

pump in each second is wqli.

Let //' be the head lost in

entering the pipe at the

canal, h" that lost in friction in the pipe, and //'" all other losses

of head, such as those caused by curves, valves, and b\

sistances in passing through the pump cylinders. Then tin-

total work performed by the pump per second i-

k = wqh + wq (h
f + h" + h'"} _'< H i

Inserting the values of the lost heads from Arts. 89-92, this

expression takes the form

k = wqh + wq (m +f^+*H\ (200),
\ d /2g

in which v is the velocity in the pipe, / its length, and d its diameter.

In order, therefore, that the losses of work may be as small a^

possible, the velocity of flow through the pipe should be 1

and this is to be effected by making the diameter of the
j-

large. The size of the pipe is here regarded a> uniform from the

canal to the reservoir; in practice the suction pijx- is u-ually

larger in diameter than the discharge pipe, in order that the suc-

tion valves may receive an ample supply of water.

For example, let it be required to determine the horse-power

of a pump to raise i 200000 gallons per day through a height of
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230 feet when the diameter of the pipe is 6 inches and its length

1400 feet. The discharge per second is

= _ 1200000-- = T 86 cubk f

7.481 X 24X3600

and the velocity in the pipe is

v =-- =
0.47 feet per second.

0.7854 X o. 5
2

The probable head lost in entering the pipe is, by Art. 89,

v
2

h
f =

0.5
=

0.5 X 1.39
=

0.7 feet.

2g

When the pipe is new and clean, the friction factor / is about

0.020, as shown by Table 90a
;

then the loss of head in friction

in the pipe is, by Art. 90,

h" = 0.020 X ^ X 1.39
=

77.8 feet.

o-5

The other losses of head depend upon the details of the pump
cylinder and the valves; if these be such that ^2 = 4, then

h"
f =4X 1.39

=
5.6 feet.

The total losses of head hence are

A' + A" + A"' = 84. i feet.

The work to be performed per second by the pump now is

k = 62.5 X 1.86(230 + 84.1)
=

36 510 foot-pounds,

and the horse-power to be expended is 36 510/550 =
66.4. If

there were no losses in friction and other resistances, the work

to be done would be simply

k = 62.5 X 1.86 X 230
= 26 740 foot-pounds,

and the corresponding horse-power would be 26 740/550 = 48.6.

Hence 17.8 horse-power is wasted in injurious resistances, or

the efficiency of the plant is only 73 percent.

For the same data let the 6-inch pipe be replaced by one 14

inches in diameter. Then, proceeding as before, the velocity of

flow is found to be 1.74 feet per second, the head lost at entrance
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0.03 feet, the head lost in friction : .. nd that IM in other

ways 0.19 feet. The total lo-i - of lu-ad .in- thus only i. % , :

as against 84.1 fee* for tin- smaller pip,.. iin ,i ,|u . norxr JH

required is 48.9, which is but lit- r than thr the..-

power. The great advantage of tin- larger pipe is thus appai
and by increasing its size to 18 inches the losx^ u f head may be

reduced so low as to be scarcely appreciable in comparison with

the useful head of 230 feet.

A pump is often used to force water directly through the mains

of a water-supply system under a designated pressure. The work

of the pump in this case consists of that required to maintain the pro-
sure and that required to overcome the frictional resist.iiurv

//! be the pressure-head to be maintained at the end of the main.

and z the height of the main above the level of the river from which

the water is pumped; then /;,+c is the head //, which corresponds to

the useful work of the pump, and, as before,

To reduce the injurious heads to the smallest limits the mains should

be large in order that the velocity of flow may be small. In

2006 is shown a symbolic representation of the case of pumping into

a main, P being the pump, C the

source of supply, and DM the pres-

sure-head which is maintained upon
the end of the pipe during the

flow. At the pump the pressure-

head is AP, so that AD represents

the hydraulic gradient for the pipe

from P to M. The total work of

the pump may then he regarded as

expended in lifting the water from
i 2001

C to A, and this consists of three parts corresjionding to tin- 1
<

or z, MD or k lt and AB or h' + //" + //'", the rir- ning the force

of gravity, the second maintaining the discharge under the required

pressure, while the last is transformed into heat in overcoming

tion and other resistances. In this direct method of water supply

a standpipe, AP, is often erected near the pump, in which the *.

rises to a height corresponding to the required pressur-
hich

furnishes a supply when a temporary stoppage of the pumpinR engine
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occurs. This standpipe also relieves the pump to some extent from

the shock of water hammer (Art. 157).

Prob. 200. Compute the horse-power of a pumpsfor the following data,

neglecting all resistances except those due to pipe friction:
<7
=

i.5 cubic

feet per second, which is distributed uniformly over a length / 1 =3ooo feet

{Art. 104), the remaining length of the pipe being 4290 feet; d = io inches,

.//
1
= 75.8 feet, and z = io.6 feet.

ART. 201. PUMPING THROUGH HOSE

In Art. 109 the flow of water through fire hose was briefly

treated and the friction factors given for different kinds of hose

linings. It was shown that the loss of head in a long hose line

l>ecomes so great, even under moderate velocities, as to consume

a large proportion of the pressure exerted by the hydrant or

steamer. As another example, let the pressure in the pump of

the fire engine be 122 pounds per square inch, corresponding

to a head of 281 feet, and let it be required to find the pressure-

head in 2 f-inch rough rubber-lined cotton hose at 1000 feet dis-

tance, when a nozzle is used which discharges 153 gallons per

minute, the hose being laid horizontal. The discharge is 0.341

cubic feet per second, which gives a velocity of 10.0 feet per sec-

ond in the hose. Hence by (90) the loss of head in friction is

231 feet, so that the pressure-head at the nozzle entrance is only

50 feet, which corresponds to about 22 pounds per square inch.

The remedy for this great reduction of pressure is to employ a

smaller nozzle, thus decreasing the discharge and the velocity

in the hose
;
but if both head and discharge are desired, they may

be obtained either by an increase of pressure at the steamer or

by the use of a larger hose.

Another method of securing both high velocity-head and

quantity of water is by the use of siamesed hose lines, and this

is generally used when large fires occur. This method consists

in having several lines of hose, generally four, lead from the

steamer to a so-called Siamese connection, from which a short

single line of hose leads to the nozzle. In Fig. 201 the pump
or fire steamer is represented by A, the Siamese joint by B, the

nozzle entrance by C, and the nozzle tip by D. From A let n
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lines of hose, each having the length /, and the- <ii.inu-ur ,/,, lead
to B

;
and from B let there be a singK lii th k and diam-

eter d* leading to the nozzle which has the diameter D.

hydraulic gradient (Art. 99) is shown by ,it><I), the pre>Mire-hcad

I '
-----^

V. C D
Fig. 201.

at A, B, C being represented by Aa, Bb, Cc. Let h be the pre-
sure-head on the nozzle tip or the difference of the elevations of

the points a and D. It is required to deduce a formula for the

velocity at the nozzle tip and to determine the pressure-heads
at B and C.

This case is one of diversions, already treated in Art. 105.

and the same principles may be applied to its solution. Neg-

lecting losses in entrance, in curvature, and in the Siamese joint,

the total head h is expended in friction in the hose lines and in

the nozzle, or
,

, k ,
, y*

ft=Ji
----T/2T ---

T~l~
di 2g d* 2g Ci* 2g

in which vi and v^ are the velocities in the lines l\ and /$, and I"

is that from the nozzle, while c\ is the coefficient of velocity of

the nozzle (Art. 83). The first term of the second membt

the head lost between A and B, and the algebraic expression for

this is independent of the number of hose lines between those

points; the velocity v\ in these hose lines depends, indeed, upon
their number, but the hydraulic gradient ab is the same for each

and all of them. The law of continuity of flow (Art. 31) gives,

however, nd = d = &V

and, taking from these the values of Vi and V* in terms of V and

inserting them in the expression for h, there results

'
=

~~7~i / r-\ A 7~~i / n\ 4
""

ef
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from which the velocity V and the velocity-head V2
/2g can be

computed, while the discharge is given by q
= \trDW. The

pressure-head h? at the nozzle entrance and the pressure-head hi

at the Siamese joint may then be found from

Ci 2g 2 Ci_2g

and, as a check, the latter should equal h minus the drop of the

hydraulic gradient between a and b.

This discussion shows that, by increasing the number n, the

loss of head between A and B may be made very small, the effect

being practically the same as that of moving the steamer to B
and using but a single hose line /2 . As a numerical example,
let h =

230.4 feet, l\
= 500 feet, /2

= 60 feet, di = </2
=

2.5 inches,

D = i inch, and Ci = 0.975. Then, taking/ as 0.03, the computed
results for different values of n are as follows, V being in feet per

second, V2
/2g in feet, and q in gallons per minute. It is seen that

= I
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Another case is where two of the hose lines between A and
B have the diameter di and the length /,, while the two other

are of the length / + /3 ,
the length / having the diamrirr / and

the length /3 the diameter (/8 . Here the primiplcs regarding com-

pound pipes (Art. 100) are also to be regarded, and formula (201)

applies likewise to this case, if n be computed from

n=2+2^
in which e represents /(//</), while ^ and e, represent f\(li/di) and

/3(/3/<W respectively. For instance, if /!
= 100. /a

= 100. and
/ = 50 feet, while d\ = d3

=
2\ inches and d 3 inches, then

the value of n2
is about 21, so that this arrangement is more effec-

tive than that of the preceding paragraph.

In the deduction of the above formulas losses of head at entrance

and in the Siamese joint have not been regarded, and it is unnecessary
to consider these when the hose lines are long. For lines less than 100

feet in length the losses of head at entrance may be taken into account

by adding the term o.$(D/di)*/n* to the denominator of (201). The
loss of head due to the Siamese joint may, in the absence of experi-

mental data, be approximately accounted for by adding about 0.02

to that denominator, thus considering its influence about one-half

that of the nozzle. In a case like that of the last paragraph, when- 1 he-

length / in two of the hose lines is nearest the pumps, the values of

e and e\ may be increased by 0.5 in order to introduce the influence

of the entrance heads. Errors of 5 percent or more are liable to occur

in computations on pumping through short hose lines.

Prob. 201 a. Three hose lines run from a pump to a Siamese connec-

tion, each being 500 feet long and 2$ inches in diameter, and from the Siamese

one line 50 feet long and 2\ inches in diameter leads to a i J-inch nozzle hav-

ing a velocity coefficient of 0.96. When the pressure at the pump is 100

pounds per square inch, what is the discharge from the nozzle and the veloc-

ity-head of the jet ? What friction heads are lost in the hose and nozzle ?

Prob. 2016. In a fire-engine test made in 1903. the lengths l\ and /

were 50 feet, the length / was 12 feet, and /5 was zero, as the nozzle wa at-

tached directly to the Siamese joint. The diameter </, was j inches, while

d and ds were i\ inches, and D was 2 inches. The pressure gage on the

steamer read oo, while one on the Siamese joint read 63 pounds per square

inch. Compute the pressure-head at the Siamese joint.
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Prob. 201c. What is the efficiency of a bucket pump which lifts 2000

liters of water per minute through a height of 3.5 meters with an expenditure
of 2.5 metric horse-powers?

Prob. 20ld. When the height of the mercury barometer is 760 milli-

meters, water at a temperature of o centigrade is raised by suction in a per-

fect vacuum to a height of 10.33 meters (Art. 193). Under the same at-

mospheric pressure, how high can it be raised when the temperature is 32

centigrade ?

Prob. 201e. What metric horse-power is required to raise 4 ooo ooo

liters per day through a height of 75 meters when the diameter of the pipe

is 20 centimeters and its length 500 meters ?

Prob. 201/. The calorie is the metric thermal unit, this being the energy

required to raise one kilogram of water one degree centigrade when the tem-

perature of the water is near that of maximum density. How many calories

are equivalent to i ooo ooo British thermal units ?
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APPENDIX

ART. 20J. HYDRAULIC-ELECTRIC ANALOGIES

It is well known that there are certain analogies between the

flow of water in pipes and that of the electric current in wires,

and some of these will here be briefly explained from a hydruuli*

point of view. The electric analog of a water pump is t he dynamo,
both being driven by mechanical power and both transforming it

into other forms of energy. The analog of a water wheel is

electric motor, each of which delivers mechanical power by virtue

of the energy transmitted to it through the water pipe or elect ri

wire. While the water is flowing from the pump to the wheel

much of its energy is lost in overcoming frictinnal resistan

whereby heat is produced ;
while the electricity is flowing from

the dynamo to the electric motor some of its energy is lost in

overcoming molecular resistances, whereby heat is prtxluced.

The steady flow of water corresponds to the continuous flow of

electricity in one direction, or to the direct current, and the fol-

lowing discussion compares hydraulic phenomena with those of

the direct electric current. The phenomena of the alternating

current have also certain hydraulic analogies in the flow of

water, but these will not be discussed here.

Let q represent electric current, R the electric resistance of a

wire of length /, cross-section a, and diameter </. and />
t In-

motive force under which the current is pushed through the

Then Ohm's law gives, if s is the specific resistance of the materi.il

of the wire, / /

p-Rq-*lq-Aq (202),
a a*

in which A is a*constant depending only on the material of the

wire. This equation shows that the eleitrir pressure p varies
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directly with the length of the wire, inversely as the square of

its diameter, and directly as the current. By increasing the length

of the wire or by decreasing its diameter, the electromotive force

required to maintain a given electric current is increased. Sim-

ilarly in a water pipe the friction-head required to maintain a

given discharge increases directly as the length of the pipe, and

is greater for a small pipe than for a large one (Art. 90).

In Art. 105 it was pointed out that the distribution of water

flow among several diversions of a pipe follows laws analogous to

those of the electric current. It was there shown that the dis-

charge q divides between the diversions inversely as their resist-

ances, providedV/7/^
5 be taken as the measure of resistance. In

electric flow the direct current is the analog of the discharge in

the water pipe, but Ohm's law shows that the resistance is the

simpler quantity fl/d
2

. The hydraulic analog of electro-motive

force is often taken to be the lost friction-head or its corresponding

unit pressure, and this will be followed here. The loss in water

pressure is represented by the hydraulic gradient (Art. 99), and

the loss in electric pressure is often represented in a similar way,
the gradient being a straight line in both cases.

In order to make an algebraic comparison of the two phenomena,
take the expression for friction-head in (90) and replace h" by p/w,

where p is the loss of unit pressure in the length /, and w is the weight

of a cubic unit of water
;
also replace v by q/a, and a by \ird?. Then

formula (90) becomes

> = ?l
2=
*;k (202)

in which the constant B depends upon the roughness of the surface

and the force of gravity. Accordingly the lost pressure varies di-

rectly as the length of the pipe, inversely as the fifth power of its

diameter, and directly as the square of the discharge.

Thus, in the case of a single water pipe or electric wire,

for electric flow p = A q
d2

for hydraulic flow p = B q
2
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If each of these flows be divided among n diversions, as in Fig. 201 ,

the expressions for the pressure become

for electric flow p-^L q
ik/1

'

for hydraulic flow p * ~- f

so that the drop of the gradient is far more rapid in the latter case ;

thus, when n is 3, the electromotive force for three wires is one-third

of that for a single wire, but the hydraulic pressure for three pipes is

one-ninth of that for a single pipe.

The conclusion to be derived from this comparison is th.it the anal-

ogies between hydraulic and electric flow are rough ones and cannot

embrace all the quantities involved. The only perfect analogy is that

p varies directly as /; the analogy between hydraulic discharge and
electric current is perfect only as regards its distribution between

branches or diversions; the analogy between hydraulic and electric

resistance is an imperfect one that is liable to lead to confusion. Al-

though a decrease in size of the pipe or wire causes an increase in rt

sistance, the law of increase is quite different in the two cases. If

hydraulic resistance be defined as in Art. 105, then the lost pressure

p is not proportional to resistance, but to its square root, while tin-

iest electric pressure p varies directly as electric resistance.

For the viscous flow of water in pipes (Art. 110), where the resist-

ances are those of sliding friction only,

/ D /_
?
= Bl _ ?>

which shows that the lost pressure is proportional to g as in Ohm's

law, so that the analogy is closer than in the common motion of water,

where the greater part of the loss is due to impact. The n

however, varies inversely as the square of the area of the JUJH-. while

in electric flow it varies inversely as the first power of the area. Thus

this analogy breaks down, as all analogies connecting electric and me-

chanical phenomena are found to do sooner or later.*

There are also analogies between the economic problems of elec-

tricity and those of hydraulics. For a wire line for the elei trie trans-

mission of power, let C be the annual expenditure in interest and sink-

*
Heavyside, Electromagnetic Theory (London, 1894), vol. i, p. aj*.
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ing fund charges on account of the cost of the wire and D be the annual

loss on account of the energy wasted in heating the wire, both for a

wire of diameter unity. Then the total annual loss is Cd? -f D/d?,
and this is a minimum when D/d? equals Cdz

;
that is, the size

of the wire which gives the greatest economy is such that the annual

value of the energy lost in heat equals the annual expenditure on the

cost of the wire line. In a similar manner, let C and D represent the

same quantities for a pipe line carrying water to a power plant, both

for a pipe of diameter unity. Then, since the thicknesses of pipes

vary as their diameters and their costs as the squares of the diame-

ters, Cd? H- D/db
is the total annual loss, and this is a minimum when

D/db
equals CW2

;
that is, the size of pipe which gives greatest econ-

omy is such that the annual value of the energy lost in friction equals

two-fifths of the annual expenditure on the cost of the pipe line.*

Prob. 202. A copper wire having a specific resistance of 0.0000016

ohms is one centimeter in diameter. A steel rail having a specific resistance

of 0.0000145 ohms has a section area of 54.8 square centimeters. A certain

transmission line consists of 9 kilometers of the copper wire and 3 kilometers

of the steel rail. Compute the loss in voltage required to maintain a direct

current of 150 amperes. If the pressure at the beginning of the line is 2500

volts and the rail is at the middle of the line, draw the electric gradient.

ART. 203. MISCELLANEOUS PROBLEMS

The following problems introduce subjects that have not

been specifically treated in the preceding pages. Teachers who

wish to offer prize problems to their classes may perhaps find

some of these suitable for that purpose.

Prob. 203a. A wooden water tank -18 feet in diameter and 24 feet high

is to be hooped with iron bands which may be safely spaced 6 inches apart

at the middle of the height. How far apart should they be spaced at the

bottom ?

Prob. 2036. A house is 60 feet lower than a spring A and 30 feet higher

than a spring B. A pipe from A to the house runs near B. Explain a

method by which the water from B can be drawn into the pipe and be deliv-

ered at the house.

Prob. 203c. A river having a width of 300 feet on the surface, a cross-

section of 1800 square feet, a hydraulic radius of 5.3 feet, and a slope of i

on 10 ooo, discharges 10 400 cubic feet per second. If it be frozen over to

the depth of one foot, what will be its discharge ?

*
Adams, Proceedings American Society of Civil Engineers, May, 1907.
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Prob. 203J. From a pumping station \\ater is forced by direct {irrtture

through a compound pipe, consisting of 7500
of i2-inch pipe, and 7 So feet of S-inrh PIJH-. in a o iiuh pi|

are three hydrants .1, K. anil ( . 4 It Ijj u<i I'n.m the . nd ..i thi- >

pipe and 115 feet above the gage at the pumping .station . /i , s 4 , , u, t from
the end of the 8-inch pipe and 135 feet above the gage ; C is 733 feet from the

end of the 8-inch pipe and 125 feet above the gage. To each of the*

drants is attached 50 feet of 2^-inch rubber-lined hose* with a i uuh smooth
nozzle at the end. When the gage at the pumping station reads 175 pounds

per square inch, to what heights will the three streams be thrown from the

three nozzles?

Prob. 20&-. When a body falls vert it-ally in water, its velocity soon be-

comes constant. For a smooth sphere an approximate formula for this \ cloc-

ity is v^/2gd(s i), in which d is the diameter of the sphere am! \ its spe-

cific gravity. Compute the velocity v for a sphere having a diameter of o.ooi

feet and a specific gravity of 1.25.

Prob. 203/. The velocity with which water Hows through a san<i

bed varies directly as the head (Art. 110). If V is the velocity in meters

per day, d the effective size of the sand grains in millimeters, k the head,

/ the thickness of the sand bed, and / the centigrade temjxTuture,

T = 1000 (0.70 + o.o.3/) (////)<*

is the formula deduced by Hazen.* When / = 32.4 centigrade. .7-0.4

millimeters, / = 4 feet, and A = 0.4 feet, find how many million gallons per

day will pass through one acre of filter beds.

Prob. 203#. A bent U tube of uniform size is partly filled with water.

Let the water in one leg be depressed a certain distance, causing that in the

other to rise the same distance. When the depressing fon e is removed, the

water oscillates up and down in the legs of the tube, the times of OM illation

being isochronous. If / be the entire length of the water in the tul>< show-

that the time of one oscillation is TT V//2. If the legs are iiu Iinn I to the

horizontal at the angles and <t>, show that the time of one oscillation

(sin0

Prob. 203/t. The bottom of a canal has the width '>h. an. I it is desired

to shape the banks so that the hydraulic radius of the cross-section may be

constant. Show that the equation of the air\

y = r log. <* + V^"-"7") (* + V*1 - r )

in which y is the depth of the water, x the half width of the water >urf.i.-e. and

r the constant hydraulic radius

Prob. 203/. A river having a slop. :oo runs ,|iu- east \linr

drawn due north at a point A on the river strikes at B, 5000 feet frtM

*
Report Massachusetts State Board of Health, i8gj, p. 553.
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the edge of a large swamp which it is desired to drain. The level of the water

in this swamp is 0.5 feet below the river surface at A, and it is desired to

lower that level 1.5 feet more. For this purpose a ditch is to be dug run-

ning from A in a straight line on a uniform slope until it joins the river at

a point C eastward from A . The discharge of this ditch, in order to properly

drain the swamp, will be 25 cubic feet per second, its side slopes are to be i

on i, the mean velocity is not to exceed 2.5 feet per second, and the coeffi-

cient c in the Chezy formula is estimated at 70. Find the length and width

of the most economical ditch.

ART. 204. ANSWERS TO PROBLEMS

Below will be found answers to some of the problems given

in the preceding 'pages, the numbers of the problems being placed

in parentheses. In general it is not a good plan for a student to

solve a problem in order to obtain a given answer. One object

of solving problems is, of course, to obtain correct results, but

the correctness of those results should be established by methods

of verification rather than by the authority of a given answer.

It is more profitable that a number of students should obtain

different answers to a problem and engage in a discussion as to

the correctness of their solutions than that all discussion should

be stopped because a certain answer is given in the text. How-

ever satisfactory it may be to know in advance the result of the

solution of an exercise, let the student bear in mind that after com-

mencement day answers to problems will not be given.

(1) One horse-power. (3) 147.2 pounds. (4) See Table 4. (7) See

Index. (8) 29.56 inches. (96) 9.54 kilograms per square centimeter.

(9<0 5575 kilograms. (12) 40.6, 1.56, 2.65. (15) 28300 pounds. (17)

4.01 feet. (206) 3.07. (20c) 2945 kilograms. (21) 56.9 feet per second.

(25) v = 32.1 feet per second. (27) 19.3 pounds. (32) 24.9 seconds.

(33c) 0.73. (35) 1.96 and 166 cubic feet. (36) 0.017 inches. (37) 1.15

feet. (39) v = 4.00 feet per second. (41) See Engineering News, May 4,

1911. (45)c = i.o6. (48) c = 0.605. (49) 17.2 feet. (50) 10.5 cubic feet

per second. (51) 0.034 cubic feet per second. (55) 103. (59a) q =
0.98.

(60) 0.361 feet per second. (62) 0.0109 feet. (67) 7.10 and 6.97 cubic

'feet per second. (71) 0.74 percent. (72) 0.581. (72o) 1.30 centimeters.

(75) 0.126 feet. (76) 0.13 and 7.60 feet. (77) 0.28 feet. (78) c = 0.90

and A! =0.70. (80) c = 0.802. (81) 6.67 feet. (83)0.963. (84) 1.06.

(89) 0.29 feet. (95) 3.06 and 4.94 inches. (98) About 6 cubic feet per

second. (112) 2.8 feet. (114) 4.4 feet. (115) 7.32 feet per second. (116)
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1.28 X 0.64 feet. (1 18) 57 400000 gallons. (120) d - 3.09 feet

0.48 meters. (129) 546 cubic feet per second. (132) 1.76 i. ,,od

(134) 760 cubic feet per second. (140) </,- 12.5 feet . // 41
meters. (145) 0.9. (146) 13.5 horse-powers. (147) i jj horsc-po
(148) 257 feet.' (149) 35.4 percent. (151<r) 18400 kil..u.,tt,

3.96 gallons. (155) About 120 pounds. (150) 345 to -i
,

r --,

(1620) =
0.83. (164) From 48 to 50 horse-powers. (165) ,

(171a) 30.1 kilowatts. (172) 1 6 feet. (175) 4.117 and 4.120. (178)

167. (182e) 27.0 cubic meters. (183) 743 horse-powers. (185) 1530
horse-powers. (191d) r = n.6 meters. (198) e - 0.78. (200) 17.8 hone-

powers. (20 Id) 9} meters.

Evolvi varia problcmata. In scicntiis cnim rclwcendw procunt rxrmpb
magisquam praecepta. Qua de causa in his fusius cxpatiatus sum. NlWTOM.

ART. 205. MATHEMATICAL TABLES

Tables A, B, C, D give constants often needed in computations.

Table E gives squares of numbers from i.oo to 9.99, the arrange-

ment being the same as that of the logarithmic table. By properly

moving the decimal point, four-place squares of other numbers arc

also readily taken out. For example, the square of 0.874 is 0.7639,

and that of 87.4 is 7639, correct to four significant figures.

Table F gives areas of circles for diameters ranging from i .00 to

9.99, arranged in the same manner, and by properly moving the deci-

mal point, four-place areas for all circles can be found. For in-

stance, if the diameter is 4.175 inches, the area is 13.69 square inches;

if the diameter is 0.535 feet, the area is 0.2248 square feet.

Table G gives trigonometric functions of angles and Table II

the logarithms of these functions. The term "arc
"
im-ans thr length

of a circular arc of radius unity, while "coarc" i^ tlu complement of

the arc, or a quadrant minus the arc. If 6 is the number of degrees

in any angle, the value of arc0 is 7r0/i8o.

Table J gives four-place common logarithms of numbers, and

these are of great value in hydraulic computations (Art. 8). Table

K, taken from the author's "Elements of Precise Sun-eying and

Geodesy,
"

gives nine-place constants and their logarithms.

For other tables used in hydraulic computations see American

Civil Engineers' Pocket Book (New York, 1912). Barlow's Tables

(London, 1907) give eight-place values of squares, cubes, square

roots, cube roots, and reciprocals of numbers from i to 10 ooo.
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TABLE A. FUNDAMENTAL HYDRAULIC CONSTANTS

English Measures

Name
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TABLE C. METRIC EQUIVALENTS OF EN

English Unit
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TABLE E. SQUARES OF NUMBERS

n
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TABLE E. SQUARES OF NUMBERS (Continued)

n
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TABLE F. AREAS OF CIRCLES

d
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TABLE F. AREAS or CIRCLES (Continutd)

d
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TABLE G. TRIGONOMETRIC FUNCTIONS

Angle
Dcg.
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TABLE H. LOGARITHMS OF TRIGONOMETRIC FUNCTIONS

Angle
Deg.
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TABLE J. LOGARITHMS OF NUMBERS

w o i 2 3 4
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TABU J. LOGARITHMS OK \i \n ( HS

" o i 2 3 4 S 6 7 f
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TABLE K. CONSTANTS AND THEIR LOGARITHMS

Name
(Radius of circle or sphere = i)
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INDEX
(The number* reler to

Absolute velocity, 60, 64, 422, 440

Acceleration, 3, n, 12, 21, 546

Acre-foot, 375

Adjutage, 178, 191

Advantageous angle, 420

nozzle, 449

section, 283

velocity, 421, 436, 44, 469, 47*.

482

Air chamber, 242, 424, 510

Air-lift pump, 528

Air valve, 224, 248

Anchor ice, 5

Angle measurements, 108

Answers to problems, 544

Approach, angle of, 236, 445

velocity of, 51, 123, 145-153

apron of dam, 163

Aqueducts, 210, 272, 300

Archimedean screw, 504

Areas of circles, 545, 556

Atmospheric pressure, 2, 7, 20, 26, 41,

188, 472, 507

Automatic devices, 251

Backpitch wheel, 450

Backwater, 344, 353, 355

function, 354

Ball nozzle, 199

Barker's mill, 453

Barometer, 7, 8, 20, 472, 507

Bazin's formula, 298, 310

Bends in rivers, 411

Bernoulli's theorem, 68, 203

Blow-offs, 224

Boiling point, 8, 20

Bore, 350, 352

Bridge piers, 342

Bristol water level gage, ?6

Boyden diffuser, 476
hook gage, 79

turbine, 395, 462

Brake, friction, 389
Branched pipes, 254

hose, 534
Breast wheels, 437, 528
Brick conduits, 295, 206

sewers, 292

Brooks, 272,317

Buckets, 435, 437, 450, 505

Bucket pumps, 13

Buoyancy, center of, 30

Canal boat, 490

lock, 136

Canals, 272-292

Cascade wheel, 441

Cast-iron pipes, 258, 295

Cat skill aqueduct, 300, 336

Center of buoyancy, 30, 499

of gravity, 31

of pressure, 34, 36

Centrifugal force, 62

pump, 521

Chain pump, 13, 528

Channels, 272-317

Chemical methods for velocity, 334

Chezy's formula, 275, 287, 313, 315

Cippoletti weir, 170

Circles, areas of, 545. 55

properties of, 280, 556

Circular conduit, 276, 279, 280

orifices, 46, 1 1 6, 138

Classification of pump*, 505, 527

of surfaces, 295. 3P4

of turbine*, 447
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Coal used by steamers, 490
Cock valve, 223

Coefficient of contraction, in
nozzles, 189

orifices, 112, 129

tubes, 184, 185

Coefficient of discharge, 115

channels, 293, 313

dams, 176

nozzles, 189

orifices, 118, 119, 121, 123

pipes, 201, 297, 298

sewers, 292

tubes, 185, 189, 192, 195

turbines, 456

weirs, 150, 152, 174, 175

Coefficient of roughness, 289, 297

Coefficient of velocity, 113

nozzles, 189

orifices, 114

tubes, 185, 195

Compound pipes, 240, 543

tubes, 191

Compressed air, 530

Compressibility of water, 5, 20

Computations, 15-22, 72, 138

Conduit pipes, 295

Conduits, 272-317
Conical tubes, 189

wheel, 451

Conservation of energy, 47, 193

Constants, tables of, 546, 556

Consumption of water, 376

Contracted weirs, 141, 140, 174

Contraction, of a jet, no
coefficient of, in

gradual, 182

sudden, 181

suppression of, 127

Converging tubes, 191

Cotton hose, 264

Crest, of a weir, 80, 142, 160

of a dam, 342

rounded and wide, 160

Critical velocity, 269

Cross-section, velocities in, 320
Croton aqueduct, 300, 301

Cubic feet, 2, 546

Current indicators, 325

meters, 96, 324, 336
Curvature factors, 218

Curved surfaces, 31

Curves, backwater. 161, 343
in pipes, 238, 245, 409
in rivers, 409

Cuttlefish, 493

Cutwater of piers, 344

Cycle of rainfall, 378

Dams, 39, 40, 43, 162, 176, 342

Danaide, 451

Data, fundamental, 1-22

Depth of flotation, 28

Design of turbines, 469
of power plants, 364
of water wheels, 451

Diameters of pipes, 230

water mains, 258, 260, 260

Differential pressure gages, 85

Diffuser, 474

Discharge, 65, 94, 115

conduits, 272-317

curves, 331,339
fountain flow, 209

gaging of, 327

nozzles, 242, 265

orifices, 109-140

pipes, 211-271

rivers, 318-364

theoretic, 65

tubes, 177-210

turbines, 462

weirs, 141-176, 159

Discharge curves, 331, 339

Discharging capacity, 233

Disk valve, 223

Displacement pumps, 527

Distilled water, 6, 19

Ditches, 272, 292

Diverging tubes, 191

Diversions, 254

Double-acting pump, 512

Double floats, 322, 336

Downward-flow wheels, 446

turbines, 471
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Draft tube, 460

Drag of a ship, 489

Drop <lo\vn cur\r, 360

function, 361

Dropping head, i ^
Duplex pump, =;i ;

Duty of pumps, 518

water, 375

Dynamic pressure, 59, 309-431, 486

Dynamo, 396, 481

Dynamometer, 381

Effective head, 53, 124, 386

power, 388

Efficiency, 57, 382

jet, 134

jet propeller^ 493

motors, 384, 391, 432

moving vanes, 420

paddle wheels, 495

pumps, 504-538

reaction wheel, 438
screw propeller, 495

turbines, 454. 456, 466, 474

water wheels, 436, 438, 439

Egg-shaped sewers, 289

Ejector pump, 529, 530

Elasticity of water, 10, 20

Electric analogies, 257, 539

generators, 396, 385

Elevations by barometer, 8

Elliptical orifices, no
Emptying a canal lock, 137

a vessel, 69

End contractions, 149

Energy, 3, 68, 178

loss of, 133

in channels, 312

tubes, 178, 200

of a jet, 56

Engine, hydraulic, 526

pressure, 528

pumping, 517

Knglish measures, i, 547

Enlargement of section, 180, 309

Entrance angle, 446, 466

Eosine, 334

Erosion, 294,341
Error* in computation*. 15, 10$

in measurement*, i i

|6e

Evaporation, 369

ingle, 464, 467

Expansion of section, 179

Fair lorm of boat, 486
Fall im reaser, 477

Falling bodies, u, 44

Feet and inches, i

Filaments, 274

Filling canal lock, 137

Filter bed, 249, 250, 268

Fire hose, 264, 270

engine, 537
-IT\ it e, 254

Floats, 250, 322

Flotation, depth of, 28

stability of, 29, 497

Flow, dynamic pressure, 58

blood in veins, 268

canals and tunduit*. ^72-317

dams, 163-167, 176

fountain, 208

jets, 54, 56, 198

non-uniform, 346

orifices, 46, 100-140

pipes, 67, 211-271

revolving vessel, 62

rivers, 318-364

steady, 31,67

tubes, 177-210

turbines, 461,453-484

under pressure, 49

Flume, testing, 396

Foot, 1,547

Foot valve, 509, 513

Force pump. 7. >o>, 510

Force, unit of, 2

Forebay. 308. 362, 3*3

Foss' formula. 304

Fountain flow. 207, 20*

Fourncymn turbine, 4>', 47*

Francis turbine, 456

float formula, 323
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Francis weir formula, 154

Free surface, 4, 25

Frictional resistances, 44

channels, 273, 295

pipes, 214

pumps, 507, 513

turbines, 432, 458
water wheels, 403, 434

ships, 486

Friction brake, 389

factors, 259, 261, 270

heads, 216, 218

Friez recording gage, 76

Gages, 2, 75, 76, 79, 81-86, 250, 338, 386

Gaging flow, 95, 129, 142

of rivers, 321, 332, 335, 374

Gallon, i, 2, 546

Gate of a turbine, 456, 458, 479

Gates, pressure on, 38

Gate valve, 224

Girard turbine, 476

Glacier, flow of, 305

Governor, 483

Gradient, hydraulic, 237, 239

Graphic methods, 105

Gravity, acceleration of, n, 12, 21,

44, 485, 546

center of, 32

water supply, 377

Greek letters, 17

Ground water, 372

Guides, 469

Hammer in water pipes, 412

Head, 25, 81, 134, 142, 178, 388

and pressure, 25, 26, 41, 51

effective, 53

losses of, 133, 217, 218, 250, 306

measurement of, 76, 79, 130, 234

Heat units, 518

Historical notes, n, 23, 206

Holyoke tests, 394
Hook gage, 79, 319, 384
Horizontal impulse wheels, 444

range of a jet, 54, 199

Horse-power, 3, 18, 547

effective, 388

nominal, 397

Horseshoe conduits, 306

Hose, 264, 270, 534

House-service pipes, 245

Hunt turbine, 459

Hurdy-gurdy wheel, 443

Hydraulic constants, 546

engine, 526

gradient, 237, 239

jump, 349

mean depth, 273

motors, 388, 432-484

press, 84

radius, 272, 543

ram, 524

Hydraulic-electric analogies, 539

Hydraulics, defined, 13

theoretical, 44-74

Hydromechanics, 13, 416, 486

Hydrometric balance, 325

pendulum, 324

Hydrostatic head, 25, 41, 68

Hydrostatics, 13, 22-45
'

Ice, 4, 5, 7, 18, 19

Immersed bodies, 36, 407

Impact, 178, 1 80, 401, 446

Impeller pump, 528

Impulse, 58, 399, 401, 408

turbines, 457, 476

wheels, 441-450

Inch, i, 547

Inclined pipes, 203

Inclined tubes, 202

Incrustations in pipes, 259

Inertia, moments of, 37, 499

Injector pump, 528

Instruments, 75-108

Inward-flow turbines, 456, 472

Inward-projecting tubes, 190

Irrigation, hydraulics, 375

Jersey City aqueduct, 302

Jet propeller, 492
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Jet pump, 528

Jets, 54-60, i g6, 205, 404, 442
contraction of, 2, no
energy of, 56

from nozzles, 102, 196

height of, 199, 209

impulse of, 56, 58, 418
on vanes, 417

path of, 54, 56, 58
rane of, 55, 56

Jonval turbine, 456

Jump, 350

Keely motor, 24

Kilowatt, 396, 547

Kinetic energy, 3, 45

Knot, 485

Kutter's formula, 287, 313-316, 319

Lampe's formula, 268, 270

Leakage, 384, 437, 509

Least squares, method of, 107

Leffel turbine, 459

Lift pump, 505

Lighthouses, 419
Linen hose, 264

Liter, 547

Lock-bar pipe, 262

Lock of canal, 136

Log, nautical, 323, 485

Logarithms, 15, 553-556

Long pipes, 230

tubes, 200

Loss of head, 133, 217, 218, 250, 306

contraction, 181, 182

curvature, 218, 222

entrance, 213

expansion, 186

friction, 194, 212, 214

Loss of weight in water, 27

Lowell tests, 394

Masonry dams, 40, 43

conduits, 300
Mathematical tables, 545-556

Mean velocity, 9 j. jj5 . J.JJfr
Measurement of water, 77, 1*9. jg*

Measuring instrument*. 75-106
rXt 7t $1, *J. *4

ry gage, 83, 85

enter, 30, 498

Meter, 547

Meters, current, cy

Premier, 93

Simplex, 92

Venturi, 89

water, 88, 132

Method of least squares, 107

Metric measures, 3, 18. :

210, 269,312,547

Mile, 485
Mill |x)wi-r. 396
Miner's inch, 131

Mississippi river, 321

Module, 132

Modulus of rl.i-ii. it\ . 10. 20, 414

Moments of inertia, 37, 499

Motors, hydraulic, 386, 391

Mouthpiece, 191

Moving vanes, 419
Mud valves, 224

Nautical mile, 485

Naval hydromechanics, 485

Navigation canals, 362

Negative pressure, 69

Niagara power plants. 304, 478

turl.

Non-uniform flow, 346
Normal pressure, 31

Nozzles, 102, 196, 242, 387, 44*. 44*.

5*9

jets from, 102, 109. 219

Numerical computations, 15

Oar, action of, 404

Oblique wcir^

Observations, discussion of, 7S"*o8

Obstructions in channel*, joa

in pipes, a$Q

Ocean waves. 351, 408, 501
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Ogee dams, 165

Ohm's law, 539

Oil, 51, 86

Oil differential gage, 87

Operating devices, 248

Orifices, 46, 109-140, 387

Oscillations, 497, 543

Outward-flow turbine, 444

Overshot wheels, 434, 528

Paddle wheels, 493

Paraboloid, 63

Patent log, 486

Path of a jet, 54

Peak load, 382

Pelton wheel, 441, 442

Pendulum, hydrometric, 324

Penstock, 383, 385, 392

Perimeter, wetted, 272

Physical properties of water, 3

Piers, 342

Piezometer, 230, 234, 238, 246

Pipes, 42, 143, 211-271, 530

curves in, 219, 410

friction factors for, 217, 269

'friction heads for, 218, 270

smooth, 67

Piston pump, 512

Pitometer, 93, 247

Pilot's tube, 101, 247, 324, 486

Plates, moving, 408, 488

Plunger pumps, 513

Pneumatic turbine, 476

Poiseuille's law, 268

Poncelet wheel, 439
Potential energy, 3, 45

Power, 3, 56, 452, 506

dynamometer, 387

Press, hydrostatic, 24

Pressure, atmospheric, 7, 8. 20. 41

center of, 34, 36

dynamic, 399-431

energy of, 177

flow under. 49

gages, 8 1, 85

horizontal, 32

measurement of, 81-88, 82

Pressure, negative, 69

normal, 31

of waves, 409, 502

on dams, 39, 40

regulator, 247

submerged body, 31

transmission of, 23

unit of, 2, 20

Pressure gage, 8, 81, 85

head, 25, 26, 41, 68, 244

regulator, 247, 249

Price current meter, 97

Probable errors, 130

Prony brake, 389

Propeller, 492, 496

Propulsion, work in, 490

Pulsometer, 529

Pumps, 7, 377, 504

Pumping through hose, 534

Pumping through pipes, 530

Pumping engines, 517

Poppet valve, 515

Radius, hydraulic, 272

gyration, 499

Ram, hydraulic, 524, 526
in pipes, 412

Range of a jet, 54, 199

Rain gage, 365

Rainfall, 365

Rating curve, 330

Rating a meter, 100

Reaction, 58, 400

experiments on, 403

turbines, 457-467, 521

wheel, 430, 453

Reciprocating pumps, 527

Recording apparatus, 77, 91

Rectangular conduits, 282, 284.

orifkes, 122, 127, 139

Reducer, 240

Regulating devices, 248

Regulator, pressure, 247

Relative capacities of pipes, 235

velocity, 60, 425

Relief valves, 249

Reservoirs, 78. 380



1 ice of plates, 4*7

of ships, 486

ibility, 528

Revolving tubes, 429

vanes, 423

Rife hydraulic engine, 526

Ring nozzle, 198

Rivers, 318-364
River water. 4, 7. 17

Riveted pipes, 260, 296

Rochester water pipe, 242

Rod float, 323

Rollins of a ship. 31, 408

Roman aqueducts, 13, 265

pipes, 13, 2ii

Rotary pumps, 527

Rounded crests, 160

orifices, IOQ, 128

Rudder, action of. 500

Runoff. 372

Salt water. 7,10

Sand, weight in water, 28

filter bed. 250

Screens. 308, 310

Screw propeller, 495

turbine, 477

Seepage, 376

Sewage, 7, 530

Sewers, 289, 318

Ships. 485-503

Shock, 434
Short pipes, 230

tube. 184

Siamese joint, 534

Siphon, 239, 260

Skin of water. 4. 70

Slip of a ship, 495. 4$6

Slope, 273, 317

Small pipes, 268

Smooth nozzle, 198

pipes, 67

Snow, 372

Sound, velocity of, 28

Specific gravity.

Speed of wheels. 4*8, 437

Speed of ships, 4*6
ol turbine*. 457. 461

Sphere, 29, 33

Square vertical orifice*, txo, 139

Square*, table of, 545, 54*
-

of flotation, 29, 407

Standard orifice, 186

tube, 184

weirs, 141

Standpipe, 213

Statical moment, 37

Steady flow, 273. 3*. 539

Steamer, coal used by. 491

Steam plants, 381

Steel pipes, 295, 206

Stone, weight of, 28

Storage of water, 378, 381

Strength of pipes,

Submerged bodie*

dams, 342

orifices, 109, 126

surfaces, 487

tube-

turbines. 458

Sub-surface float, 322, 33

velocitu*. 323, 330

Suction. 8, 504, 506

Suction pump. ;o4 . 57
Sudbury conduit. 301, 314

Suppressed 175

Suppression of contract i--

Surface curve. i'7. 348

vel *jo

Surfaces, center of pre

I upon, 58, 405

pressure on, 32, 399

Syringe. 505

Tables, x, 545~55

Tank, 76, 1 25. 384

Temperature, 6, 130. 547

motors. 388

pumping eiinr<

turt 481
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Theoretical hydraulics, 44-74
Theoretic discharge, 65

velocity, 46, 52

Thermal heat unit, 518

Throttle valve, 223

Tidal bore, 350

waves, 397, 501

Tide gate, 38

Tides, 397, 452, 501

Time, 2, 18

Transmission of pressures, 24

Transporting capacity, 294, 339

Trapezoidal conduits, 286

weirs, 170

Triangular orifices, no
Triangular weirs, 168

Trigonometric functions, 545, 552

Triple nozzle, 444

Troughs, 272

Tubes, 101, 177-210, 429

Tubercules in pipes, 259, 262

Tunnel, Niagara, 478

Turbines, 14, 383, 453-484, 528

Tutton's formula, 304

Twin screws, 496

turbines, 461

Undershot wheels, 439, 450
Uniform flow, 67, 204, 274

Unit of heat, 518

Units of measure, i, 18, 547

Unsteady flow, 334

Uplift, dams, 40

Vacuum, 7, 13, 188, 504

compound tube, 188

pumps, 517

standard tube, 187

turbines, 475

Valves, 223, 248, 251

Vanes, 417, 440, 469
in motion, 423

revolving, 429
Variations in discharge, 130, 337

in rainfall, 368
Velocities in a cross-section, 204, 310, 320

Velocity, 2, 18, 44

absolute, 60

coefficient of, 113

critical, 269

curves of, 204

from orifices, 47

in conduits, 275

in pipes, 204, 267, 274

in rivers, 321

mean, 274, 275

measurement of, 95, 96, 101, 322
of approach, 51, 145-153

of sound and stress, 10, 21

of the bore, 352

of waves, 501

relative, 60

to move materials, 301, 339

Velocity-head, 47, 68

Venturi water meter, 89, 205

Vermeule's formula, 371

Vertical jets, 46, 114, 199, 219

orifices, 116, 118, 121

Vertical turbines, 451

wheels, 444

Vessel, emptying of, 69

moving, 61

revolving, 63

Viscous flow, 541

Vortex whirl, 71

Waste of water, 246

weirs, 162

Water, barometer, 8, 20, 507

boiling point of, 8

compressibility, 9

distilled, 6, 19

dynamic pressure, 58, 399

freezing of, 4, 5, 18

hammer, 248, 412

mains, 227, 251

maximum density, 4, 6

measurement of, 77, 132, 384

meters, 88

physical properties, 3-20

pipes, 34, 42, 211-271

power, 381-398

pressure of, 2, 18, 23
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Water, storm, 373

, 365-381

vapor, 507

waste ol.

weight of, 6, 19 .

Water -pressure engine, 451

Watershed, 370
Water wheels, 423, 432-452

Waterwitch, 493

Waves, 351, 408, 501

Writhing water, 77, 385

Weight of ice, 7, 19

masonry. 40

mercury, 8, 83

sand, 28

'c, 7

submerged bodies, 27

water, 6, 19, 485

Weir-. So. 141 170, 386

Wetted perimeter

Wheel pit, 478

Wheels, breast, 426, 450

horizontal, 445, 459

impulse, 443, 448

Wheels, overshot, 435, 449

reaction, 430, 453, 473

turbine, 453-484

undershot, 434, 450

vertical, 443, 460
Whirl at orifice, 71

Wide crests, 161

Williams and Ha/m's formula, 304

Wind, 322, 328, 332, 370
line. 541

Wood conduits, 281, 297

Wood pipes, 263, 295
ii nned, 3, 38*

!'ri tin, 216, 276

motors, 433, 481

propulsion, 490

pumping, 505

ships, 490, 494

vanes, 421,425
units of, 3, 18, 547

Yield of watershed, 378

Young man, 17. 5 3, 544
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